Advanced Engineering Mathematics Lecture 45

Example 1. In what direction from the point (1, 1, -1) is the directional derivative of $f(x, y, z) = x^2 - 2y^2 + 4z^2$ a maximum? Also find the value of maximum directional derivative. **Solution:** We are given that $f(x, y, z) = x^2 - 2y^2 + 4z^2$. $\vec{\nabla} f(x, y, z) = 2x \hat{i} - 4y \hat{j} + 8z \hat{k}$.

The directional derivative of f is maximum in the direction of ∇f . Since the point P is given by (1, 1, -1), therefore $\nabla f(1, 1, -1) = 2\hat{i} - 4\hat{j} - 8\hat{k} = \vec{a}$.

The maximum directional derivative is given by

$$\frac{df}{ds} = \vec{\nabla}f(1, 1, -1) \cdot \hat{a} = \frac{|\vec{\nabla}f|^2}{\vec{\nabla}f} = |\vec{\nabla}f| = 2\sqrt{21}.$$

Example 2. For the function $f(x, y) = \frac{y}{x^2 + y^2}$. Find the value of the directional derivative making an angle 30° with the positive x-axis at the point (0, 1).

Solution: The directional derivative is given by

$$\begin{split} \vec{\nabla}(x,y) &= \frac{\partial f}{\partial x} \,\hat{i} + \frac{\partial f}{\partial y} \,\hat{j} \\ &= -\frac{2xy}{(x^2 + y^2)^2} \,\hat{i} + \frac{x^2 - y^2}{x^2 + y^2} \,\hat{j} \\ \vec{\nabla}(0,1) &= - \,\hat{j}. \end{split}$$

The unit vector which makes an angle 30° with the positive x-axis is given by $\cos 30^{\circ}\hat{i} + \sin 30^{\circ}\hat{j}$. Hence the corresponding directional derivative is

$$\vec{\nabla}f(0,1) \cdot (\cos 30^{\circ}\hat{i} + \sin 30^{\circ}\hat{j}) = -\sin 30^{\circ} = -\frac{1}{2}$$

Example 3. What is the greatest rate of increase of $u = xyz^2$ at (1,0,3)? Solution: $\vec{\nabla}u(x,y,z) = yz^2\hat{i} + xz^2\hat{j} + 2xyz\hat{k}$. Hence $\vec{\nabla}u(1,0,3) = 9\hat{j}$.

The greatest rate of increase of u at (1,0,3) = the maximum value of $\frac{df}{ds}\Big|_{(1,0,3)} = |\vec{\nabla}u(1,0,3)| = 9.$

Example 4. Find the equation of the tangent plane and normal to the surface $2xz^2 - 3xy - 4x = 7$ at the point (1, -1, 2).

Solution: The given surface $f(x, y, z) = 2xz^2 - 3xy - 4x - 7 = 0$. Then

$$\vec{\nabla} f(x, y, z) = (2z^2 - 3y - 4)\,\hat{i} - 3x\,\hat{j} + 4xz\,\hat{k}$$
$$\vec{\nabla} f(1, -1, 2) = 7\hat{i} - 3\hat{j} + 8\hat{k}$$

Here $7\hat{i} - 3\hat{j} + 8\hat{k}$ is the vector along the normal to the surface at (1, -1, 2).

If R = (X, Y, Z) is the position vector of any point in tangent plane at (1, -1, 2). Then the vector $\vec{R} - (\hat{i} - \hat{j} + 2\hat{k})$ is perpendicular to the vector $\vec{\nabla}f(1, -1, 2)$. Therefore, the required equation of tangent is

$$((X-1)\hat{i} + (Y+1)\hat{j} + (Z-2)\hat{k}) \cdot \vec{\nabla}f(1,-1,2) = 0 7(X-1) - 3(Y+1) + 8(Z-2) = 0 7X - 3Y + 8Z = 20.$$

The equation of the normal to the surface at the point (1, -1, 2) is

$$\frac{X-1}{\frac{\partial f}{\partial x}} = \frac{Y+1}{\frac{\partial f}{\partial y}} = \frac{Z-2}{\frac{\partial f}{\partial z}}$$
$$\frac{X-1}{7} = \frac{Y+1}{-3} = \frac{Z-2}{8}.$$