Advanced Engineering Mathematics Lecture 44

Directional derivative: Let f(x, y, z) be a scalar function defined on a region \mathcal{R} . Let P be any arbitrary point in \mathcal{R} and suppose Q is a point in the region \mathcal{R} which is a neighboring point of P in the direction of a given unit vector \hat{a} . Then the limit $\lim_{Q \to P} \frac{f(Q) - f(P)}{PQ}$, if it exists, is called directional derivative of f at the point P in the direction of \hat{a} .

Remark 0.1. Let P = (x, y, z) and $Q = (x + \delta x, y + \delta y, z + \delta z)$ be two points in the region \mathcal{R} . Let \hat{a} be the unit vector and $\delta f = f(Q) - f(P)$. Then $\frac{\delta f}{\delta s}$ represents the average rate of change of f per unit distance in the direction of \hat{a} . Now, the directional derivative of at P in the direction of \hat{a} is

$$\lim_{Q \to P} \frac{f(Q) - f(P)}{PQ} = \lim_{\delta s \to 0} \frac{\delta f}{\delta s} = \frac{df}{ds}.$$

Theorem 0.2. The directional derivative of a scalar function f at a point P(x, y, z) in the direction of a unit vector \hat{a} is given by

$$\frac{df}{ds} = \vec{\nabla}f \cdot \hat{a}$$

Example 1. Let $f(x, y, z) = x^3yz + 4xz^2$ be a scalar function. The directional derivative of f in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$ at a point (1, -2, -1) is given by

$$\frac{df}{ds}\Big|_{(1,-2,-1)} = \vec{\nabla}f(1,-2,-1) \cdot \frac{2\hat{i} - \hat{j} - 2\hat{k}}{\sqrt{2^2 + 1^2 + 2^2}}$$

 $\vec{\nabla}f(x,y,z) = (3x^2yz + 4z^2)\,\hat{i} + x^3z\,\hat{j} + (x^3y + 8xz)\,\hat{k}. \text{ Therefore, } \vec{\nabla}f(1,-2,-1) = 10\hat{i} - \hat{j} - 10\hat{k},$ and $\frac{df}{ds} = \frac{20 + 1 + 20}{3} = \frac{41}{3}.$

Let f(x, y, z) = c be the equation of the level surface. Let $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ be a position vector of any point P on this surface. Then $\vec{\nabla}f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$ is a vector along the normal to the surface at the point P, i.e., $\vec{\nabla}f$ is perpendicular to the tangent plane at the point P.

Let Q = (X, Y, Z) then $\vec{PQ} = \vec{R} - \vec{r} = (X - x)\hat{i} + (Y - y)\hat{j} + (Z - z)\hat{k}$ lies on the tangent plane at P to the surface. But since, $\vec{\nabla}f$ is perpendicular to the tangent plane, i.e., $\vec{\nabla}f \perp \vec{PQ}$ implies

$$\nabla f \cdot PQ = 0$$
$$(X - x)\frac{\partial f}{\partial x} + (Y - y)\frac{\partial f}{\partial y} + (Z - z)\frac{\partial f}{\partial z} = 0.$$

This is the required equation of a tangent plane at P.

Example 2. Let $x^2y + 2xz = 4$ be the level surface. Unit normal to the level surface at (2, -2, 3) is $\widehat{\nabla}f(2, -2, 3)$.

$$\vec{\nabla}f(x, y, z) = (2xy + 2z)\,\hat{i} + x^2\,\hat{j} + 2x\,\hat{k}$$
$$\vec{\nabla}f(2, -2, 3) = -2\hat{i} + 4\hat{j} + 4\hat{k}$$

Therefore unit normal to the given level surface at (2, -2, 3) is $\frac{1}{3}(-\hat{i}+2\hat{j}+2\hat{k})$.