Advanced Engineering Mathematics Lecture 44

Directional derivative: Let $f(x, y, z)$ be a scalar function defined on a region R. Let P be any arbitrary point in R and suppose Q is a point in the region R which is a neighboring point of P in the direction of a given unit vector \hat{a} . Then the limit $\lim_{Q \to P}$ $\frac{f(Q)-f(P)}{PQ}$, if it exists, is called directional derivative of f at the point P in the direction

Remark 0.1. Let $P = (x, y, z)$ and $Q = (x + \delta x, y + \delta y, z + \delta z)$ be two points in the region R. Let \hat{a} be the unit vector and $\delta f = f(Q) - f(P)$. Then $\frac{\delta f}{\delta s}$ represents the average rate of change of f per unit distance in the direction of \hat{a} . Now, the directional derivative of at P in the direction of \hat{a} is

$$
\lim_{Q \to P} \frac{f(Q) - f(P)}{PQ} = \lim_{\delta s \to 0} \frac{\delta f}{\delta s} = \frac{df}{ds}.
$$

Theorem 0.2. The directional derivative of a scalar function f at a point $P(x, y, z)$ in the direction of a unit vector \hat{a} is given by

$$
\frac{df}{ds} = \vec{\nabla} f \cdot \hat{a}.
$$

Example 1. Let $f(x, y, z) = x^3yz + 4xz^2$ be a scalar function. The directional derivative of f in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$ at a point $(1, -2, -1)$ is given by

$$
\left. \frac{df}{ds} \right|_{(1, -2, -1)} = \vec{\nabla} f(1, -2, -1) \cdot \frac{2\hat{i} - \hat{j} - 2\hat{k}}{\sqrt{2^2 + 1^2 + 2^2}}.
$$

 $\vec{\nabla} f(x, y, z) = (3x^2yz + 4z^2)\hat{i} + x^3z\hat{j} + (x^3y + 8xz)\hat{k}$. Therefore, $\vec{\nabla} f(1, -2, -1) = 10\hat{i} - \hat{j} - 10\hat{k}$, and $\frac{df}{ds} = \frac{20 + 1 + 20}{3}$ $\frac{1+20}{3} = \frac{41}{3}$ $\frac{11}{3}$.

Let $f(x, y, z) = c$ be the equation of the level surface. Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ be a position vector of any point P on this surface. Then $\vec{\nabla}f = \frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z}$ $\frac{\partial f}{\partial z} \hat{k}$ is a vector along the normal to the surface at the point P, i.e., $\vec{\nabla} f$ is perpendicular to the tangent plane at the point P.

Let $Q = (X, Y, Z)$ then $\vec{PQ} = \vec{R} - \vec{r} = (X - x)\hat{i} + (Y - y)\hat{j} + (Z - z)\hat{k}$ lies on the tangent plane at P to the surface. But since, $\vec{\nabla} f$ is perpendicular to the tangent plane, i.e., $\nabla f \perp P Q$ implies

$$
\vec{\nabla}f \cdot \vec{PQ} = 0
$$

$$
(X - x)\frac{\partial f}{\partial x} + (Y - y)\frac{\partial f}{\partial y} + (Z - z)\frac{\partial f}{\partial z} = 0.
$$

This is the required equation of a tangent plane at P.

Example 2. Let $x^2y + 2xz = 4$ be the level surface. Unit normal to the level surface at $(2, -2, 3)$ is $\hat{\nabla} f(2, -2, 3)$.

$$
\vec{\nabla} f(x, y, z) = (2xy + 2z)\hat{i} + x^2 \hat{j} + 2x \hat{k}
$$

$$
\vec{\nabla} f(2, -2, 3) = -2\hat{i} + 4\hat{j} + 4\hat{k}
$$

Therefore unit normal to the given level surface at $(2, -2, 3)$ is $\frac{1}{3}(-\hat{i} + 2\hat{j} + 2\hat{k})$.