Advanced Engineering Mathematics Lecture 43

1 Partial Derivative

Suppose \vec{r} is a vector function depending on more than one scalar variable. Let $\vec{r} = \vec{f}(x, y, z)$, i.e., \vec{r} is a function of variable x, y and z. Thus partial derivative of \vec{r} with respect to x is defined by

$$\frac{\partial \vec{r}}{\partial x} = \lim_{h \to 0} \frac{\vec{r}(x+h,y,z) - \vec{r}(x,y,z)}{h}.$$

Similarly, we can defined $\frac{\partial \vec{r}}{\partial y}, \frac{\partial \vec{r}}{\partial z}, \frac{\partial^2 \vec{r}}{\partial x \partial y}, \dots$

Vector Differential Operator: The vector differential operator $\vec{\nabla}$ (nabla) and it is defined as

$$\vec{\nabla} = \frac{\partial}{\partial x}\,\hat{i} + \frac{\partial}{\partial y}\,\hat{j} + \frac{\partial}{\partial z}\,\hat{k}$$

Gradient of a scalar function: Let f be defined and differentiable at each point (x, y, z) in a certain region of space. Then the gradient of f is denoted by

$$\vec{\nabla}f = rac{\partial f}{\partial x}\hat{i} + rac{\partial f}{\partial y}\hat{j} + rac{\partial f}{\partial z}\hat{k}.$$

Example 1. Let the scalar function $f(x, y, x) = x^3yz^2$. Then the gradient of f is

$$\begin{split} \vec{\nabla} f(x, y.z) = & 3x^2 y z^2 \,\hat{i} + x^3 z^2 \,\hat{j} + 2x^3 y z \,\hat{k} \\ \vec{\nabla} f(1, 1, 2) = & 12\hat{i} + 4\hat{j} + 4\hat{k}. \end{split}$$

Properties: Let f and g be a multi-variable scalar function.

- 1. $\vec{\nabla}(f \pm g) = \vec{\nabla}f \pm \vec{\nabla}g$
- 2. $\vec{\nabla}(fg) = g\vec{\nabla}f + f\vec{\nabla}g$

Definition 1. Let f(x, y, z) be a scalar field over a region \mathcal{R} . Then the points satisfying an equation of the type

$$f(x, y, z) = c$$

constitute a family of surface in 3-dimensional space is called *level surface*.

Lemma 1.1. Let f be a scalar function. Then $\vec{\nabla} f$ is a vector normal to the surface f(x, y, z) = c, where c is a constant.