Advanced Engineering Mathematics Lecture 40

Equivalent Matrices and Elementary Matrices

An $n \times n$ matrix B is said to be equivalent to an $n \times n$ matrix A over the same field \mathbb{F} if B can be obtained from A by a finite number of elementary rows and columns operations.

Definition. For a given $m \times n$ matrix A, a row-reduced echelon matrix B can be obtained by applying on A a finite number of elementary row operation on A. On B, we can apply column operations to reduce it into a column reduced echelon matrix, say C. This C has the following properties:

- (a) No zero row is followed by a non-zero row.
- (b) No zero column is followed by a non-zero column.
- (c) The leading 1 in each non-zero row is the only non-zero element.
- (d) The leading 1 in each non-zero column is the only non-zero element.
- (e) The leading 1 in the kth row is the leading 1 in the kth column.

Thus, C has the form $C = \begin{bmatrix} I_r & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,n-r} \end{bmatrix}$, where I is the identity matrix of order r, O_{oq} is the zero matrix of order $p \times q$. Then, C is called the Fully-Reduced-Normal-Form.

Example 1. Obtain the fully reduced normal form of the matrix A give by $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	0	0	1	2	1]
	1	3	1	0	3	
	2	6	4	2	8	·
	3	9	4	2	10	

Solution. Let us first apply the elementary row operations.

$$A = \begin{bmatrix} 0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 3 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10 \end{bmatrix} \xrightarrow{R_4 \to R_1} \begin{bmatrix} 1 & 3 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_3} \begin{bmatrix} 1 & 3 & 0 & -2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{R_2 - 2R_3}{R_1 + 2R_3}} \begin{bmatrix} 1 & 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$= B \to \text{row equivalent to } A$$

$$\begin{array}{c} \frac{c_5 - 2c_1}{c_2 - 3c_1} \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{c_{23}}_{c_{34}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$= C = \begin{bmatrix} I_3 & O_{3,2} \\ O_{1,3} & O_{1,2} \end{bmatrix} \rightarrow \text{fully reduced normal form.}$$

Example 2. Show that the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & -3 \end{bmatrix}$ is non-singular and express it as the product of elementary matrices.

Solution. We start the process and apply operation as follows:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & -3 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 3 & 3 & 0 \\ 6 & 2 & -3 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 3 & -\frac{3}{2} \\ 0 & 2 & 0 \end{bmatrix}$$
$$\xrightarrow{\frac{1}{3}R_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 2 & 0 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 + \frac{1}{2}R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3.$$

Clearly, A is row-equivalent to I_3 . Since, $|I_3| \neq 0$, this implies A is non-singular. In short,

$$\begin{split} I_3 &= \left[\left(R_2 + \frac{1}{2} R_3 \right) \left(R_1 - \frac{1}{2} R_3 \right) \left(R_3 - 2R_2 \right) \left(\frac{1}{3} R_2 \right) \left(R_2 - 3R_1 \right) \left(R_3 - 6R_1 \right) \left(\frac{1}{2} R_1 \right) \right] A \\ &= \left[E_{23} \left(\frac{1}{2} \right) E_{13} \left(-\frac{1}{2} \right) E_{32} \left(-2 \right) E_2 \left(\frac{1}{3} \right) E_{21} \left(-3 \right) E_{31} \left(-6 \right) E_1 \left(\frac{1}{2} \right) \right] A \\ &= \left[\left(R_2 + \frac{1}{2} R_3 \right) \left(R_1 - \frac{1}{2} R_3 \right) \left(R_3 - 2R_2 \right) \left(\frac{1}{3} R_2 \right) \left(R_2 - 3R_1 \right) \left(R_3 - 6R_1 \right) \left(\frac{1}{2} R_1 \right) \right] A \end{split}$$

$$A = \left[E_{23} \left(\frac{1}{2} \right) E_{13} \left(-\frac{1}{2} \right) E_{32} \left(-2 \right) E_2 \left(\frac{1}{3} \right) E_{21} \left(-3 \right) E_{31} \left(-6 \right) E_1 \left(\frac{1}{2} \right) \right]^{-1} I_3$$

$$= \left\{ E_1 \left(\frac{1}{2} \right) \right\}^{-1} \left\{ E_{31} \left(-6 \right) \right\}^{-1} \left\{ E_{21} \left(-3 \right) \right\}^{-1} \left\{ E_2 \left(\frac{1}{3} \right) \right\}^{-1} \left\{ E_{32} \left(-2 \right) \right\}^{-1} \left\{ E_{13} \left(-\frac{1}{2} \right) \right\}^{-1} \left\{ E_{23} \left(\frac{1}{2} \right) \right\}^{-1} I_3$$

$$= \left[E_1 \left(2 \right) E_{31} \left(6 \right) E_{21} \left(3 \right) E_2 \left(3 \right) E_{32} \left(2 \right) E_{13} \left(\frac{1}{2} \right) E_{23} \left(-\frac{1}{2} \right) \right] I.$$

Definition. An $n \times n$ matrix obtained by applying a single elementary row operations on I_n is said to be an Elementary Matrix of order n. There are three types of elementary matrices.

- 1. The elementary matrix obtained by applying R_{ij} on I_n is denoted by E_{ij} .
- 2. The elementary matrix obtained by applying cR_{ij} on I_n is denoted by $E_i(c)$.
- 3. The elementary matrix obtained by applying $R_i + cR_j$ on I_n is denoted by $E_{ij}(c)$.

$$E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_2(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{13}(c) = \begin{bmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$