Advanced Engineering Mathematics Lecture 37

Example 8. Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find the eigenvalues and eigenvectors of A.

Solution. Let $\lambda \in \mathbb{F}$. Then, the characteristic equation is: $\det(A - \lambda I) = 0 \implies \begin{vmatrix} 0 - \lambda & -1 \\ 1 & 0 - \lambda \end{vmatrix} \implies \lambda^2 + 1 = 0 \implies \lambda = \pm \iota.$

Case 1. Let $\lambda = \iota$ and $X = (x_1, x_2) \in \mathbb{R}^2$. Then

$$AX = \lambda X$$

$$\implies \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \iota \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} \iota x_1 \\ \iota x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} -\iota x_1 - x_2 \\ x_1 - \iota x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

For eigenvalue $\lambda = \iota$, we get $x_1 = \iota c$, where $x_2 = c \in \mathbb{R}$. Then, the required eigenvector is $X = \begin{bmatrix} \iota \\ 1 \end{bmatrix} c$; $c \in \mathbb{F}$.

Case 2. Let $\lambda = -\iota$ and $X = (x_1, x_2) \in \mathbb{R}^2$. Then

$$AX = \lambda X$$

$$\implies \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\iota \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} = -\begin{bmatrix} \iota x_1 \\ \iota x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} \iota x_1 - x_2 \\ x_1 + \iota x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

For eigenvalue $\lambda = -\iota$, we get $x_1 = -\iota c$, where $x_2 = c \in \mathbb{R}$. Then, the required eigenvector is $X = \begin{bmatrix} -\iota \\ 1 \end{bmatrix} c$; $c \in \mathbb{F}$.

Diagonalisation of a Matrix

Similar Matrices. Let us consider all $n \times n$ matrices over the field \mathbb{F} . An $n \times n$ matrix A is said to be similar to an $n \times n$ matrix B, if there exists a non-singular matrix P of order $n \times n$ such that $B = P^{-1}AP$. We say that A and B are similar matrices.

$$B = P^{-1}AP$$

$$\implies PB = PP^{-1}AP = (PP^{-1})AP = IAP = AP$$

$$\implies PBP^{-1} = APP^{-1} = A$$

$$\implies A = Q^{-1}BQ, \text{ where } Q = P^{-1}.$$

Let $A = (a_{ij})_{n \times n}$ be a square matrix. Then, A is said to be Diagonalisable, if A is similar to an $n \times n$ diagonal matrix.

Example 1. Diagonalise the matrix $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$

Solution. Step 1. Let $\lambda \in \mathbb{F}$ be the eigenvalue. Then

$$\det(A - \lambda I) = 0$$

$$\implies \begin{vmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{vmatrix} = 0$$

$$\implies \lambda = -2, 4, -2.$$

Step 2. Let $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ be the eigenvector.

$$AX = \lambda X$$

$$\implies \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = -2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 - 3x_2 + 3x_3 \\ 3x_1 - 5x_2 + 3x_3 \\ 6x_1 - 6x_2 + 4x_3 \end{bmatrix} = -2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies \begin{bmatrix} 3x_1 - 3x_2 + 3x_3 \\ 3x_1 - 3x_2 + 3x_3 \\ 6x_1 - 6x_2 + 6x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Which gives us $x_1 - x_2 + x_3 = 0$. So, $x_2 = c$, $x_3 = d$, $x_1 = c - d$, where $c, d \in \mathbb{F}$. The required solution: X = (c - d, c, d). The eigenvector corresponding to $\lambda = -2$ is (1, 1, 0) and (-1, 0, 1), i.e., $\left\{ \begin{bmatrix} c - d \\ c \\ d \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}; c, d \in \mathbb{F} \right\}.$

Step 3. For $\lambda = 4$, follow the same process and find the eigenvector. it will be continued in the next lecture.