Advanced Engineering Mathematics Lecture 33

continued from Lecture 32...

Let us choose one of basis of R having the elements: $\alpha_1 = (1, 0, 0), \alpha_2 = (0, 1, 0), \alpha_3 = (0, 0, 1)$. From which one can easily get: $T(1, 0, 0) = (1, 2, 1) = T(\alpha_1)$, $T(0, 1, 0) = (1, 1, 2) = T(\alpha_2)$, $T(0, 0, 1) =$ $(1, 2, 1) = T(\alpha_3)$. Clearly, the set $\{T(\alpha_1), T(\alpha_2), T(\alpha_3)\}\$ is linearly dependent. Then, we consider the set $\{T(\alpha_1), T(\alpha_2)\} = \{(1, 2, 1), (1, 1, 2)\}$, which is linearly independent. The image set Im(T) is generated/spanned by $\{T(\alpha_1), T(\alpha_2)\}\$, i.e., Im $(T) = \{T(\alpha_1), T(\alpha_2)\}\$. Also, dim $(\text{Im}(T)) = 2$. From here, we observe that: $\dim (\ker(T)) + \dim (\text{Im}(T)) = 1 + 2 = 3 = \dim (\mathbb{R}^3) \implies \text{null}(T) +$ rank $(T) = \dim(V)$.

Theorem 1. If $T: V \to W$ is a linear transformation, then $null(T) + \text{rank}(T) = \dim(V)$. This theorem is known as Rank-Nullity Theorem.

Theorem 2. Let V and W be two vector spaces over a field \mathbb{F} , and $T: V \to W$ be a linear transformation. Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of V, then $\{T(\alpha_1), T(\alpha_2), ..., T(\alpha_n)\}$ generates $\text{Im}(T)$.

Example 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^4$ be such that $T(x_1, x_2, x_3) = (x_2 + x_3, x_3 + x_1, x_1 + x_2, x_1 + x_2 + x_3)$.

- (i) Verify T is linear.
- (ii) Find ker (T) .
- (iii) Verify $\{T(1, 0, 0), T(0, 1, 0), T(0, 0, 1)\}\$ is linearly independent set.

Solution. (i) Let us consider $\alpha = (x_1, x_2, x_3)$ and $\beta = (y_1, y_2, y_3)$. So,

$$
T(\alpha + \beta) = T(x_1 + y_1, x_2 + y_2, x_3 + y_3)
$$

= $(x_2 + y_2 + x_3 + y_3, x_3 + y_3 + x_1 + y_1, x_1 + y_1 + x_2 + y_2, x_1 + y_1 + x_2 + y_2 + x_3 + y_3)$
= $(x_2 + x_3 + y_2 + y_3, x_3 + x_1 + y_3 + y_1, x_1 + x_2 + y_1 + y_2, x_1 + x_2 + x_3 + y_1 + y_2 + y_3)$
= $T(x_1, x_2, x_3) + T(y_1, y_2, y_3) = T(\alpha) + T(\beta)$

Similarly, one can check that $T(c\alpha) = cT(\alpha)$. $\implies T$ is linear. (ii) By definition, $\ker(T) = \left\{ \alpha = (x_1, x_2, x_3) \in \mathbb{R}^3 : T(\alpha) = \vec{0} \in \mathbb{R}^4 \right\}$. This leads to a system of equations: $x_2 + x_3 = 0$, $x_3 + x_1 = 0$, $x_1 + x_2 = 0$, $x_1 + x_2 + x_3 = 0$, which has the solution: $x_1 = 0, x_2 = 0, x_3 = 0.$ Therefore, $\ker(T) = \{(0, 0, 0)\}\ \{\theta\}.$

(iii) Now let $\alpha_1 = (1, 0, 0), \alpha_2 = (0, 1, 0), \alpha_3 = (0, 0, 1).$ Then, $T(1, 0, 0) = (0, 1, 1, 1), T(0, 1, 0) =$ $(1, 0, 1, 1), T(0, 0, 1) = (1, 1, 0, 1).$ Let $c_1, c_2, c_3 \in \mathbb{F}$ be such that

$$
c_1T(\alpha_1) + c_2T(\alpha_2) + c_3T(\alpha_3) = \vec{0}
$$

\n
$$
\implies c_1(0, 1, 1, 1) + c_2(1, 0, 1, 1) + c_3(1, 1, 0, 1) = (0, 0, 0, 0)
$$

leading to: $c_2 + c_3 = 0$, $c_1 + c_3 = 0$, $c_1 + c_2 = 0$, $c_1 + c_2 + c_3 = 0$. So, $c_1 = 0$, $c_2 = 0$, $c_3 = 0$. Clearly, all c_i 's, $i = 1, 2, 3$ are zero. The set $\{T(\alpha_1), T(\alpha_2), T(\alpha_3)\}$ is linearly independent.

Example 3. Let us consider a map $T : \mathbb{R}^3 \to \mathbb{R}^2$ be such that $T(x_1, x_2, x_3) = (x_1 + x_2, x_3 + x_2)$.

- (i) Verify if T is linear.
- (ii) If yes, find $\ker(T)$ and $\text{Im}(T)$.

Example 4. Let $T : \mathbb{R}^7 \to \mathbb{R}^8$ be such that $T(x_1, x_2, \ldots, x_7) = (x_1 + x_2, x_2 + x_3, \ldots, x_7 + x_8, x_8 + x_1)$.

- (i) Verify if T is linear.
- (ii) If yes, find ker (T) and Im (T) .