Advanced Engineering Mathematics Lecture 3

1 Mean Value Theorem

Geometrical Interpretation of LMVT If a curve y = f(x) is continuous from x = a to x = b and has a definite tangent at each point of the curve between x = a to x = b, then geometrically the LMVT means that there is at least one point on the curve between A(a, f(a)) and B(b, f(b)) where the tangent is parallel to the chord AB.

S Gree metrical Interpretation of LMVT: gf a curve y = f(a) is continuous from z = a to z = b, and has a definite tangent at each point of the curve between z = a to z = b, then geometrically the LMVT means that thrue is at least one point on the curve between A(a, f(a)) and B(b, f(b)) where the tangent is parallel to the Chord AB.

Theorem 1.1. (Cauchy Mean Value Theorem) If two real valued functions f and g defined on a [a,b] are such that

i) f and g are continuous on [a, b]

ii) f and g are differentiable on (a, b), i.e., f' and g' exists on (a, b)iii) for no point in (a, b) such that g'(x) = 0, i.e., $g'(x) \neq 0 \ \forall x \in (a, b)$. Then, there exists at least one point $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Note: LMVT can be derive from Cauchy's MVT by taking g(x) = x on [a, b].

Example 1.1. If f'(x) exists on (0, 1), then show that by Cauchy's MVT that $f(1) - f(0) = \frac{f'(x)}{2x}$ has at least one root in (0, 1).

Sol. We consider $g(x) = x^2$ on [0, 1]. Then both f(x) and g(x) are continuous on [0, 1] and they are diffrentiable on (0, 1). Also, $g'(x) = 2x \neq 0 \ \forall x \in (0, 1)$. Then by Cauchy MVT, \exists at least one point, say $c \in (0, 1)$, such that

$$\frac{f(1) - f(0)}{1 - 0} = \frac{f'(c)}{g'(c)} = \frac{f'(c)}{2c}$$

This implies that there exists at least one $c \in (0, 1)$ which satisfies $f(1) - f(0) = \frac{f'(x)}{2x}$.

Example 1.2. In Cauchy's MVT for the functions $\phi(x) = e^x$ and $f(x) = e^{-x}$, show that c is the arithmetic mean between a and b.

Sol. We are given that $\phi(x) = e^x$ and $f(x) = e^{-x}$. Both ϕ and f are continuous on [a, b] and they are differentiable on (a, b). Also, $f'(x) = -e^{-x} \neq 0 \quad \forall x \in (a, b)$. The condition for

CMVT are satisfied. Therefore there exists at least one $c \in (a,b)$ such that

$$\frac{\phi(a) - \phi(b)}{f(a) - f(b)} = \frac{\phi'(c)}{f'(c)}$$

$$\Rightarrow \frac{e^b - e^a}{e^{-b} - e^{-a}} = \frac{e^c}{-e^{-c}} = -e^{2c}$$

$$\Rightarrow \frac{e^b - e^a}{\frac{1}{e^b} - \frac{1}{e^a}} = -e^{2c}$$

$$\Rightarrow -e^{a+b} = -e^{2c}$$

$$\Rightarrow a + b = 2c$$

$$\Rightarrow c = \frac{a+b}{2}$$