Advanced Engineering Mathematics Lecture 15

1 Integral Calculus

Example 1.1. Evaluate $I = \int_{R} x \sin(x+y) dx dy$, where $R := [0, \pi] \times [0, \frac{\pi}{2}]$. Sol. Using $\left[\int_{x=a}^{b} \left\{\int_{y=c}^{d} f(x,y) dy\right\} dx = \int_{y=c}^{d} \left\{\int_{x=a}^{b} f(x,y) dx\right\} dy\right]$, we have $I = \int_{y=0}^{\frac{\pi}{2}} \int_{x=0}^{\pi} x \sin(x+y) dx dy$ $= \int_{x=0}^{\pi} \left[\int_{y=0}^{\frac{\pi}{2}} x \sin(x+y) dy\right] dx$ $= \int_{0}^{\pi} \left[-x \cos(x+y)\right]_{0}^{\frac{\pi}{2}} dx$ $= \int_{0}^{\pi} [x \sin x + x \cos x] dx$ $= \pi - 2$

Double integral over a region. If f is a continuous function in a domain D which is bounded by the curve $y = \phi(x), y = \psi(x), x = a, y = b$, where ϕ and ψ are continuous on [a, b] and $\phi(x) \leq \psi(x)$ then,

$$\iint_D f(x,y) \, dx \, dy = \int_{x=0}^b \left[\int_{y=\phi(x)}^{\psi(x)} f(x,y) \, dy \right] dx.$$

Example 1.2. Evaluate $\iint_R x^3 y^2 dx dy$ over the circle $C: x^2 + y^2 \le a^2$.

Sol. The circle C is

$$x^2 + y^2 \le a^2 \Rightarrow y^2 \le a^2 - x^2 \Rightarrow -\sqrt{a^2 - x^2} \le y \le \sqrt{a^2 - x^2}.$$

When y = 0, then $x^2 \le a^2 \Rightarrow -a \le x \le a$.

$$\iint_{R} x^{3}y^{2} dx dy = \int_{x=-a}^{a} x^{3} \left\{ \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} y^{2} dy \right\} dx$$
$$= \frac{2}{3} \int_{-a}^{a} x^{3} (a^{2}-x^{2})^{\frac{3}{2}} dx$$
$$= 0$$

Example 1.3. Evaluate $I = \iint_R y \, dx \, dy$ over the part of the plane bounded by the line y = x and the parabola $y = 4x - x^2$.

Sol. Putting y = x in $y = 4x - x^2 \Rightarrow x = 4x - x^2 \Rightarrow x(x-3) = 0 \Rightarrow x = 0, 3$. The line joining the parabola meets at (0, 0) and (3, 3). Any line parallel to y-axis cuts the boundary of the region into two points, say P and Q. Thus,

$$I = \iint_{R} y \, dx \, dy = \int_{x=0}^{3} dx \int_{x}^{4x-x^{2}} y \, dy = \frac{1}{2} \int_{0}^{3} \left[(4x-x^{2})^{2} - x^{2} \right] dx = \frac{54}{5}.$$

Example 1.4. Evaluate $I = \iint_R \cos(x+y) \, dx \, dy$ over the domain closed by $x = 0, y = \pi, y = x$.

Sol.

$$I = \int_{x=0}^{\pi} \int_{y=x}^{\pi} \cos(x+y) \, dx \, dy$$

= $\int_{x=0}^{\pi} \, dx \Big\{ \int_{y=x}^{\pi} \cos(x+y) \, dy \Big\}$
= $\int_{x=0}^{\pi} \Big[\sin(x+y) \Big]_{y=x}^{\pi} \, dx$
= $\int_{x=0}^{\pi} (-\sin x - \sin 2x) \, dx$
= -2

Change of the order of the integration.

Example 1.5. Change the order of integration in the double integral $I = \int_0^a \left\{ \int_x^{\sqrt{2ax-x^2}} f(x,y) \, dy \right\} dx.$

Sol. The given domain of the integration is described by a line which starts from x = 0 i.e, y-axis and moving parallel to y-axis terminates at x = a. Further the extremities of the moving line lie on the parts of the line y = x and the circle $x^2 + y^2$ in the first quadrant. when we change the order of integration, the same region is described by a line moving parallel to x-axis instead of y-axis. The line y = x and the circle $x^2 + y^2 = 2ax$ cut at the points (0,0) and (a, a). Any line parallel to x-axis cuts the domain into two points P'Q'. We have

$$x^2 - 2ax + y^2 = 0 \Rightarrow x = a \pm \sqrt{a^2 - y^2}.$$

Then,

$$I = \int_{y=0}^{a} dy \int_{x=a-\sqrt{a^2-y^2}}^{y} f(x,y) dx.$$

Example 1.6. $\int_0^1 dx \int_x^{\sqrt{x}} f(x,y) dy \to \int_0^1 dy \int_{y^2}^y f(x,y) dx$ Example 1.7. $\int_{-1}^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy \to \int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx.$