Advanced Engineering Mathematics Lecture 15

1 Integral Calculus

Example 1.1. Evaluate $I = \int$ R $x \sin(x+y) dx dy$, where $R := [0, \pi] \times [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$. **Sol**. Using $\left[\int_{x=a}^{b} \left\{\int_{y=c}^{d} f(x,y) dy \right\} dx = \int_{y=c}^{d} \left\{\int_{x=a}^{b} f(x,y) dx \right\} dy\right]$, we have $I = \int_0^{\frac{\pi}{2}}$ $y=0$ \int_0^π $x=0$ $x \sin(x + y) dx dy$ $=$ \int_0^{π} $x=0$ $\int_0^{\frac{\pi}{2}}$ $y=0$ $x\sin(x+y) dy\big\}\,dx$ $=$ \int_0^{π} $\boldsymbol{0}$ $\left[-x\cos(x+y)\right]^{\frac{\pi}{2}}$ $\int_0^2 dx$ $=$ \int_0^{π} $\boldsymbol{0}$ $[x\sin x + x\cos x] dx$ $= \pi - 2$

Double integral over a region. If f is a continuous function in a domain D which is bounded by the curve $y = \phi(x), y = \psi(x), x = a, y = b$, where ϕ and ψ are continuous on [a, b] and $\phi(x) \leq \psi(x)$ then,

$$
\iint_D f(x,y) dx dy = \int_{x=0}^b \left[\int_{y=\phi(x)}^{\psi(x)} f(x,y) dy \right] dx.
$$

Example 1.2. Evaluate \int R $x^3y^2 dx dy$ over the circle $C: x^2 + y^2 \leq a^2$.

Sol. The circle C is

$$
x^{2} + y^{2} \le a^{2} \Rightarrow y^{2} \le a^{2} - x^{2} \Rightarrow -\sqrt{a^{2} - x^{2}} \le y \le \sqrt{a^{2} - x^{2}}.
$$

When $y = 0$, then $x^2 \le a^2 \Rightarrow -a \le x \le a$.

$$
\iint_{R} x^{3}y^{2} dx dy = \int_{x=-a}^{a} x^{3} \left\{ \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} y^{2} dy \right\} dx
$$

$$
= \frac{2}{3} \int_{-a}^{a} x^{3} (a^{2} - x^{2})^{\frac{3}{2}} dx
$$

$$
= 0
$$

Example 1.3. Evaluate $I = \left| \int \right|$ R $y dx dy$ over the part of the plane bounded by the line $y = x$ and the parabola $y = 4x - x^2$.

Sol. Putting $y = x$ in $y = 4x - x^2 \Rightarrow x = 4x - x^2 \Rightarrow x(x-3) = 0 \Rightarrow x = 0, 3$. The line joining the parabola meets at $(0, 0)$ and $(3, 3)$. Any line parallel to y-axis cuts the boundary of the region into two points, say P and Q . Thus,

$$
I = \iint_{R} y \, dx \, dy = \int_{x=0}^{3} dx \int_{x}^{4x-x^2} y \, dy = \frac{1}{2} \int_{0}^{3} \left[(4x - x^2)^2 - x^2 \right] dx = \frac{54}{5}.
$$

Example 1.4. Evaluate $I = \iint$ R $cos(x+y) dx dy$ over the domain closed by $x = 0, y = \pi, y =$ x.

Sol.

$$
I = \int_{x=0}^{\pi} \int_{y=x}^{\pi} \cos(x+y) \, dx \, dy
$$

= $\int_{x=0}^{\pi} dx \left\{ \int_{y=x}^{\pi} \cos(x+y) \, dy \right\}$
= $\int_{x=0}^{\pi} \left[\sin(x+y) \right]_{y=x}^{\pi} dx$
= $\int_{x=0}^{\pi} (-\sin x - \sin 2x) \, dx$
= -2

Change of the order of the integration.

Example 1.5. Change the order of integration in the double integral $I = \int^a$ 0 $\int \sqrt{2ax-x^2}$ x $f(x, y) dy dx$.

Sol. The given domain of the integration is described by a line which starts from $x = 0$ i.e, y-axis and moving parallel to y-axis terminates at $x = a$. Further the extremities of the moving line lie on the parts of the line $y = x$ and the circle $x^2 + y^2$ in the first quadrant. when we change the order of integration, the same region is described by a line moving parallel to x-axis instead of y-axis. The line $y = x$ and the circle $x^2 + y^2 = 2ax$ cut at the points $(0,0)$ and (a, a) . Any line parallel to x-axis cuts the domain into two points $P'Q'$. We have

$$
x^{2} - 2ax + y^{2} = 0 \Rightarrow x = a \pm \sqrt{a^{2} - y^{2}}.
$$

Then,

$$
I = \int_{y=0}^{a} dy \int_{x=a-\sqrt{a^2-y^2}}^{y} f(x, y) dx.
$$

Example 1.6. \int_1^1 $\mathbf{0}$ $dx \int^{\sqrt{x}}$ x $f(x, y) dy \rightarrow \int_0^1$ $\mathbf{0}$ $dy \int^y$ $\int_{y^2} f(x, y) dx$ Example 1.7. \int_1^1 −1 $dx \int \sqrt{1-x^2}$ 0 $f(x, y) dy \rightarrow \int_0^1$ 0 Z $\sqrt{1-y^2}$ $\int_{-\sqrt{1-y^2}} f(x, y) dx.$