Advanced Engineering Mathematics Lecture 14

1 Integral Calculus

Line integral. A curve in \mathbb{R}^2 is given by $c = \{(x, y) : x = \phi(t), y = \psi(t), a \le t \le b\}$. We may write this curve C as $x = \phi(t)$, $y = \psi(t)$, $a \le t \le b$. Let $f(x, y)$ be a bounded function defined at every point of C. Consider any partition P of [a, b] such that $P = \{a = t_0, t_1, t_2, \dots, t_n =$ b}. Let $x_r = \phi(t_r)$, $y_r = \psi(t_r)$ and $\xi_r \in [t_{r-1}, t_r]$ be arbitrary. consider the sum

$$
S = \sum_{r=1}^{n} f[\phi(\xi_r), \psi(\xi_r)](x_r - x_{r-1}).
$$

If the norm $\mu(P) \to 0$, the sum S tends to a finite limit which is independent of the choice of the point ξ_r and the limit is denoted by $\mathcal C$ $f(x, y) dx$.

Working principle : $\mathcal{C}_{0}^{(n)}$ $f(x, y) dx = \int_0^b$ a $f(\phi(t), \psi(t))\phi'(t) dt$

Example 1.1. Find $I = \int$ $\mathcal C$ $y^2 dx - x^2 dy$ $\frac{dx}{x^2+y^2}$, where C is the semi-circle $x = a \cos t, y =$ $a \sin t, 0 \le t \le \pi$.

Sol.

$$
I = \int_C \frac{y^2 dx - x^2 dy}{x^2 + y^2} = \int_C \frac{y^2 \frac{dx}{dt} - x^2 \frac{dy}{dt}}{x^2 + y^2} dt
$$

= $\frac{1}{a^2} \int_{t=0}^{\pi} [a^2 \sin^2 t(-a \sin t) - a^2 \cos^2 t(a \cos t)] dt$
= $-\frac{a^3}{a^2} \int_0^{\pi} [\sin^3 t \cos^3 t] dt$
= $-a \int_0^{\pi} [\sin^3 t \cos^3 t] dt = -\frac{4a}{5}$

Example 1.2. Evaluate $I = \int$ $\mathcal C$ $(x^2 dx + xy dy)$ taken along the line segment $(1,0)$ to $(0,1)$.

Sol. The equation of the line passing through $(1, 0)$ to $(0, 1)$ is $x + y = 1 \Rightarrow dy = -dx$.

Then,
$$
I = \int_C (x^2 dx + xy dy) = \int_0^1 (x^2 dx + x(1-x)(-dx)) = \int_0^1 (2x^2 - x) dx = -\frac{1}{6}
$$
.

Double integral over a rectangle R. Let f be a function of two variables x and y over a rectangle $R : [a, b] \times [c, d]$. Let

$$
P_1 = \{a = x_0, x_1, \cdots, x_n = b\}, \ P_2 = \{c = y_0, y_1, \cdots, y_n = d\}
$$

$$
U(P, f) = \sum_i \sum_j M_{ij} (x_i - x_{i-1})(y_j - y_{j-1}), \ L(P, f) = m_{ij} (x_i - x_{i-1})(y_j - y_{j-1}),
$$

where $U(P, f)$ and $L(P, f)$ are the upper sum and lower sum, respectively. M_{ij} and m_{ij} are the upper bound and the lower bound of $f(x, y)$ in $[x_{i-1}, x_i] \times [y_{i-1}, y_i]$, respectively.

If $\lim_{n\to\infty} U(P, f)$ exists, then it is denoted as \iint_R R $f(x, y) dx dy$ (upper integral) and similarly if $\lim_{n\to\infty} L(P, f)$ exists, then it is denoted as \iint $-R$ $f(x, y) dx dy$ (lower integral).

If both upper integral and lower integral exists and equal, then the value is denoted by $\iint_R f(x, y) dx dy$. This is called the double integral of f over R.

Example 1.3. Evaluate \int R $(x^2 + 2y) dx dy$ where $R = [0, 1] \times [0, 2]$.

Sol.

$$
\int_{y=0}^{2} \left[\int_{x=0}^{1} (x+2x) \, dx \right] dy = \int_{0}^{2} \left[\frac{x^3}{3} + 2xy \right]_{0}^{1} dy = \int_{0}^{2} \left[\frac{1}{3} + 2y \right]_{0}^{1} dy = \left[\frac{y}{3} + y^2 \right]_{0}^{2} = \frac{14}{3}.
$$