Advanced Engineering Mathematics
Lecture 1

1 Derivative at a point
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exists, then the function is said to be derivable at point x = ¢ and the derivative is denoted

by f'(¢). f'(c) is called the derivative of the function f at point x = c.

A function f is said to be derivable from the right or left at a point c if hlim+
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If a function f is defined on a neighbourhood of a point ¢ and

or
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We define h]i>ron+w as Rf'(c) and hlif(r]l_ f(c—i—h]z—f(C) as Lf'(c).

Example 1.1. Let f(z) = |z| Vz € R. Verify whether f is differentiable at z = 0.

Sol. Given function

f(z) = |z|
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By definition,
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i.e, Rf'(0) # Lf'(0) = f is not differentiable at z = 0. But, |f(z)— f(0)| = ||z|-0] = |z| < e
whenever 0 < |z| < § = f is continuous at 0.
Remark. Every differentiable function is continuous but converse may not be true.
Physical meaning of derivative: Derivative of a function f at a point z = ¢ i.e. f/(c)
means the gradient of the curve y = f(z) at point P(c, f(c) and f’(c)represents the rate of
change of the function f(x) at x = ¢ with respect to the independent variable x.
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Example 1.2. Let us consider the function

f(z) = xsin % if x#0

=0 if =0

Then, verify that f(x) is differentiable at x = 0.



Sol. Here |f(z) — f(0)| = |zsinl — 0| = |zsin | = |z sin 2|
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— f(0)| = |zsin = — 0] = |zsin —| = in—
£(@) = £0)] = fasin - — 0] = forsin | = |o]]sin - |

=|f(z) — f(0)| <|z| <e whenever 0< |z] <

= f is continuous at = = 0.

By definition,
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But lim,_,q sin% does not exist. f/(0) = lim,_,o sin% does not exist. This implies that the
function f is not differentiable at x = 0.

Example 1.3. Let us define
9 .1 .
flz)=2a%sin — if z#0
x
=0 if x=0

Sol. By definition we can show that f is differentiable. However, when x # 0, then

fl(@) =2zsinl +2%cosl — & =2zsinl —cos l.
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