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Our next topic is solving an initial value problem. So, we will describe an outline for solving 

the initial value problem in a couple of lectures. So, what is initial value problem? So, if we 

have a problem consists of differential equations given by 

                                              
𝑑𝑛𝑦

𝑑𝑥𝑛 = 𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1))…(1) 



and it satisfy this equation with subject to the boundary conditions 

                             𝑦(𝑥0)= 𝑦0, 𝑦′(𝑥0) = 𝑦′0, … , 𝑦(𝑛−1)(𝑥0) = 𝑦(𝑛−1)
0…(2) 

 

So, that means conditions are prescribed at a single point 𝑥0 . So, then in this case equation (1) 

subject to condition (2) is called or is referred as initial value problem. IVP in short, with 𝑥0 as 

the initial condition, initial point. 

Now one simplicity for this initial value problem or IVP is that any nth order initial value 

problem can be converted to n first order initial value problem. So, if we substitute what we 

can see very straightforward that and nth order IVP is equivalent to n first order IVP, very 

simple to say or to prove. So, you have equation (1) and (2) which are nth order IVP. Now if I 

substitute, let  

𝑧1 = 𝑦′, 𝑧2 = 𝑧1
′ = 𝑦′′, 𝑧3 = 𝑧2

′ = 𝑦′′′, ..., 𝑧𝑛−1 = 𝑦(𝑛−1) = 𝑧𝑛−2
′  

These right-side values are all prescribed. So, that means we now have n number of first order 

IVP.  

So that means, in other words, that if I know, if we know to solve a first order IVP then we can 

extend our knowledge to solve any nth order IVP because any nth order IVP can be equivalently 

reduced to n first order IVP. So, that is why we restrict our attention to know how to solve an 

equation of this form. If we once know how to tackle this kind of situation, so then we are 

equipped enough to solve any nth order initial value problem. 

Now for the sake of simplicity, x can be transferred, we can make a coordinate transformation 

x→x-𝑥0, say and instead of wired initial point as 𝑥0, we can consider initial point as 0, so 

without loss of ambiguity  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0  

 our task is to find y(x). 𝑦0 is  given value.  
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Now before solving the few conditions that will post problem. So, how we define? When we 

go for a numerical solution, numerical solution is little bit of conditional with an ideal situation. 

So, that means when you are going to solve the numerical solution that means we are assuming 

that solution exists and that solution is unique.  

So, if you have a solution which is already proved to be exist and it is unique then through the 

numerical procedure, we obtain that solution. So, this is the initial assumption or initial action 

before we proceed for starting the numerical solution. By the numerical solution we cannot 

prove that solution does not exist or multiple solution exists. So, that kind of complications we 

are not dealing with. 

So, that kind of problem we call as well processed problem. The conditions, the governing 

equations and auxiliary conditions maybe the initial condition in this case, can be boundary 

condition, also, in the same way we can also define for the boundary value problem, if the 

following condition holds. Following solution exists which we should not ask whether solution 

exists or not, no doubt about that.  

Solution is unique, solution depends continuously on the auxiliary data. Auxiliary data means 

all the boundary conditions, initial conditions. So, if these two happens, this thing happens we 

are going to solve under this assumption that we have a solution which exists and unique and 

the solution continuously depends, so if we change the initial condition or the boundary 

conditions that reflects the solution of the numerical solution as well in continuous fashion.  

So, under these assumptions we will talk about some numerical method to solve this. So, what 

we now focus on numerical methods for IVP. So, what you have given is  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(0) = 𝑦0 . 

So, you need to find out y(x) for x≥0, from 0 onwards. So, that means something has happened 

at x=0. So, we know the form of the solution and then we proceed on x. So, what is the solution 

is, that means a train has started with an initial acceleration or initial velocity is prescribed at 

x=0 and then what is the distance covered by the train as time progresses?  

Now, so first of all in the numerical solution we have to specify that at what points we are 

going to obtain y. So, that means the solutions, at what values of x, we are going to determine. 

So, that has to be specified. So,  𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < ⋯ the points where we need to find 

out the solution. So, find  



𝑦𝑖 = 𝑦(𝑥𝑖), 𝑖 = 1,2, … , 𝑛   

For i= 0 𝑦
0

= 𝑦(𝑥0).  

So, now these points the discrete points where we have to find out the solution say 𝑥𝑖, so these 

discrete points define  

 𝑥𝑖 = 𝑖ℎ, i=0,1,…  

ℎ = 𝑥𝑖 − 𝑥𝑖−1   

So, that means this 𝑥𝑖 's are all equi-spaced points.  

So, first of all if we want to find out 𝑦1 so first thing first. So,  

𝑦1 = 𝑦(𝑥1) = 𝑦(0 + ℎ) . 

 If I expand by Taylor series, I get  

            𝑦1 = 𝑦(0) + ℎ𝑦′(0) +
ℎ2

2
𝑦"(0) + ⋯   

𝑦1 = 𝑦(0) + ℎf(x, y)|𝑥=0 +
ℎ2

2
𝑦"(0) + ⋯   

So, now if we retain only up to linear order of h, we get  

𝑦1 = 𝑦(0) + ℎf(x, y)|𝑥=0  

So, this is the procedure.   

Now I obtain the solution at 𝑥1 by this method by this manner. So, once I get that then with 

this 𝑥1  I can go to 𝑥2  and so on. So, in general I can write this  

𝑦
𝑖

= 𝑦
𝑖−1

+ ℎ𝑓(𝑥𝑖−1, 𝑦
𝑖−1

), 𝑖 = 1,2, ..      

So, this is the general method for i=1, 2 up to whatever the points where 𝑦0 is prescribed. So, 

this simple procedure is called the Euler method which is very well known which is referred 

as Euler method.  
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Now, so obviously this is a very simple procedure that you start with the initial solution. Then 

add these term you get the next one, 𝑦1  once you get 𝑦1  then you go to the 𝑦2  and so on. So, 

this simple procedure, now what we need to know the truncation error or because what we did 

here that instead of solving the whole set of infinite series, we have truncated here.  

So, there is an error committed. So, that error is referred as the truncation error which is the 

amount by which the exact solution of the ODE fails to satisfy the approximate solution.  

So, this is the truncation error we are talking about, if 𝑌𝑖  is the exact solution, then the 

truncation error T.E. can be written as  

𝑇. 𝐸. =
𝑌𝑖−𝑌𝑖−1

ℎ
 - 𝑓(𝑥𝑖−1, 𝑌𝑖−1)   



So, all these things we are replaced. So, if I replace by the solution of this difference equation 

𝑦𝑖−𝑦𝑖−1

ℎ
 - 𝑓(𝑥𝑖−1, 𝑦𝑖−1) = 0. This is the difference equation. 

Now when I am replacing this approximate solution by the exact solution, so, this side may not 

be 0. So, whatever the residue that residue is called the truncation error. So, this is the difference 

equation. So, you are asked to solve the  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 So, instead what we are doing is we are solving this difference equation and getting this 𝑦𝑖. 

And demanding that this 𝑦𝑖 is the approximate solution of the differential equation that is 

approximate solution of 𝑌𝑖.  

Now we are defining a parameter what you would refer as the truncation error, truncation error 

is the one when the difference equation is replaced by the exact solution of the differential 

equation. So, the residue, I think this will be the  amount by which the exact solution of the 

ODE fails to satisfy the difference equation. So, that is the one we call as the truncation error. 

So, we need to have an expression for truncation error. So,  

𝑇. 𝐸. =
𝑌𝑖−𝑌𝑖−1

ℎ
  −𝑓(𝑥𝑖−1, 𝑌𝑖−1)  

 Now if I expand by Taylor series, so what I get is  

𝑇. 𝐸 =
1

ℎ
[ℎ

𝑑𝑦

𝑑𝑥
|𝑥𝑖−1

+
ℎ2

2

𝑑2𝑦

𝑑𝑥2 |𝑥𝑖−1
+ ⋯ ] − 𝑓(𝑥𝑖−1, 𝑌𝑖−1)   

=  𝑓(𝑥𝑖−1, 𝑌𝑖−1) +
ℎ

2

𝑑2𝑦

𝑑𝑥2
|𝑥𝑖−1

+ 0(ℎ2) −  𝑓(𝑥𝑖−1, 𝑌𝑖−1) 

=
ℎ

2

𝑑2𝑦

𝑑𝑥2
|𝑥𝑖−1

+
ℎ2

3!

𝑑3𝑦

𝑑𝑥3
|𝑥𝑖−1

+ ⋯ 0(ℎ) 

 

 

So, we are finding the solution at 𝑥𝑖−1.  

 So, what I find the leading order term, order h and one important thing is that these truncation 

error tends to 0 as h → 0. So, that means the method is consistent with the given ODE. The 

ODE and the TE is order h. 



Now this is very important to check that what is the leading order term. So, leading order term 

is given by this way so we cannot exactly measure the truncation error because that involves 

the infinite degree differential equation. So, we cannot go on measuring that, what is important 

to measure is the order, order of h. How accurate is the method is that is depends on the choice 

of h. So, what should be the choice of h to measure the accuracy.  

So, what I find that this method is of first order in h. So, that means Euler method is a first 

order approximation and up here of course it is consistent. So, obviously this is the very basic 

method that is  

𝑦𝑖 = 𝑦𝑖−1 + ℎ𝑓(𝑥𝑖−1, 𝑦𝑖−1),   𝑖 = 1,2, … 

 

So, this is a very basic or the very simple method. So, this is a first order method but consistent. 

We stop here and then we talk about some higher order methods on the initial value problem 

and characterize the procedure. Thank you.   

 


