Advanced Computational Techniques
Professor Somnath Bhattacharyya
Department of Mathematics
Indian Institute of Technology, Kharagpur
Lecture 10
Linear System of Equations (Contd.)
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So, we will talk about some iterative methods we already discussed for solving the linear system

of equation Ax=Db. If it is a large system. we talked about Gauss-Jacobi iterative process, we are

talking about Gauss-Jacobi, there we do is every equation we write as Xi(k“): ai {b; — X1 x(_k)}

ii 4ij
J=1, k>0, i=1, 2,. .. .n j#I, this is the Gauss-Jacobi iteration that means the other part, so except
the of course, this what they need is a;; to be nonzero. So, if it is a diagonally dominant that
guarantees convergence. Then there is an improvement that is what is the Gauss-Seidel iteration,
so what we do there is we now when say this is the iteration, this is the points or the grid points or
what you call the variables.

this is say x;, x,etcetera, x;, x;,1, S0 | can call this as xi minus 1. So, when we come here x; so at
a particular x;, iteration say. So, that means from k we are starting from 0, so at k plus 1 iteration

k, maybe the k equal to O is a static one. So, add the k plus 1 iteration when we come to x;,. So,



that means, already we have obtained the solution from x,, x5, ..., x;_,up to that. So, Gauss-Seidel
iteration make use of this.

So, that means, what we do is x*"= ai (bl- SN TN YR ey )

(0)

So, k>0 and i=1,2, ...n. So, to start the iteration process x; - is assumed for all i=1,2, ...n. So, this

is already assumed, so this is the Gauss-Seidel iteration or Gauss-Jacobi iteration that already we
have discussed and if it is diagonally dominant matrix, we have a convergence guaranteed but

without failure of diagonally dominant also it can convert.

Now, as can be seen that this is a linear process, so that means the iteration converge but converge
at a slower rate unlike the new translation technique which is quadratically converge. So, that

means, every step the error is reducing in a quadratic fashion. But here the error is going in a linear

fashion.
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So, in order to accelerate the convergence, convergence acceleration, so there are one very easy
technique is called the successive over relaxation technique, SOR in the short form. Now, this is
something like that, suppose, you want to shoot a or hit a flying bird. Now, what we do that we
assume when we are targeting a position where we want to hit the bird we assume or we position

little ahead of the bird where we are thinking about at the time of shooting.

So, what | mean is that suppose you are here and there is a flying bird is moving. So, when you
want to shoot this flying bird say something like this bird. So, what you do is you target this
position this point and we assume that the time by which the stone or the whatever we are throwing

so will hit the object the object will move to this position.

So, this is the technique for SOR. So, that means, what we know that say this is the converge

solution alpha for P — DS — a; — (converge solution), this is the converge solution.

i i

we know that we are moving in the right direction.

So, that is why what we do is we take a extrapolation between these two values and we call that at
the k+1 iteration our value is a little ahead of these Gauss-Seidel value, whatever the iteration

(k+1)
i

(k+1)
i

(k+1)
i

values, so we call this as u , S0, that means u is written as u = u§k>+w

(x.(kH) — ugk) ), k>0.

l



(k+1)
i
(k+1)
i

And o is a real some number called the relaxation parameter. So, one thing is that if ®=1 so u

this modification we have not defined what is ui(k“)is. So, before that let us call this with u
(k
i

is the modification of the Gauss-Seidel iteration u*** at the iteration level (k +1).

(k+1)
i

Now, at the iteration level (k +1). So, obviously if ®=1, so that means u no modification equal

u§k+1) (k+1) and

to no modification and what we find that if ®>1, so it is an extrapolation of u,
() ) o L K+D

previous iteration u; “can be the x; h

and another thing is that if =0, so no

improvement. So, normally omega cannot be zero so no improvement in solution.

(k+1)
i
(k+1)
i

(k+1) -
i |

So, that means u S

= ui(k)and another important thing is that if <0, in that case u

lying between u and ul.(k) . S0, in this case this is called the under relaxation. So, 0 < w <
1 is called the under relaxation, so where some cases what we find that the say under relaxation

SUR is also called SUR.

k) _ _Uet)

PTG i
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i

Now, u , a;1s the converse solution and what we find that this

or ul.(k)

isa x and this is xi(k“) So, next step xl.(“z). So, that means there is a either one time it
is overshooting another time is under shooting like that way. So, that means it is exceeding the
converged value. So, what we find that error is changing the sign. We do not know we may not

have the idea of converged solution.

So, what we find that error is or some case is bigger some case is smaller values so if that is the

case then we apply that under relaxation technique. So, in between values xl.(""“)So, normally what
we do is this either successive over relaxation or under relaxation we applied when after few steps.
So, that means for certain k >K finite number of iteration after few iteration level few iterations
we apply this technique and then at that point we know that whether the error is successively
reducing or it is oscillating. So, that means, either it is going up going positive going negative, so
in that case we which kind of technique we will use. Now, whether0 < w <1 orl < w < 2 that
called the over relaxation. Now, one thing is that it can be proved easily that the relaxation
parameter omega must rely on w to be picked in the range 0 < w < 2 if one which guarantees the

convergence.



But failure of that does not imply that it is not convergent, convergence of iteration. So, this is how

the improvement of convergence is meant. Now, so there it is normally Gauss-Seidel iteration so

(k“) we use by Gauss-Seidel iteration and then we come to the stage, the stage x k) by some

(k+1)

Gauss-Seidel iteration apply here, get a modified value u; using the previous iterated values

and that is called the SUR technique. w is some value is prescribed and then we repeat the process.

So, this is how the convergence acceleration can meet.

(Refer Slide Time: 15:13)
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Now, there are several other iterative process for solving like we are not going to talk about much
descent method, class of method and then conjugate gradient method, so we are not discuss on
much about this only thing | just want to give a overview for this so any book if you find | mean
interested you can learn this conjugate gradient method a iterative process a class of iterative
process which is refers the steepest descent method should there if you have a system Ax =

b where A is a nxn real symmetric positive definite matrix.

Now, what is symmetric means AT = A because it is a real. And what is positive definite means,
positive definite. Now, if | call a quadratic form so any quadratic form say = Q(x) = xT Ax. So,
if this Q(x) > 0 for all choice of x #0 then it is a positive definite matrix. So, a matrix is such
that the quadratic form associated with this is positive always then it is the one which is referred

as the positive definite.



Now, this also can be written as x transpose Ax, so if | define (X, Ax) if | define the inner product
between two vector (x y) = xT y. So, this is the inner product. Now, we have also show that this

can be written as since AT = A, so this we can write as this Q(X)=(4x)Tx = (x, Ax) inner product.
So, if such a matrix are there, which are positive definite, so that means

Q(X)=x"Ax = ¥ aj, x;x; so if this kind of form if I write then it is a positive definite. So, this
quadratic form is always >0 a material of whatever the value is. So, for all x, oh this is positive for

all x;#0, Now, j,k 1 ton.
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There is a theorem. Based on this theorem all these steepest descent methods conjugate gradient
methods are all derived is if A is a real nxn symmetric positive definite matrix and b is a nx1
vector.

Define a quadratic form as
B(x) = s xTAx-xTh

then the minimizer of @(x) is the solution of Ax = b.

In other words, this quadratic form has minimum value if Ax = b is satisfied that is those x which

are the solution of the linear system. In other words, solving that is solving a system Ax = b is



equivalent to the problem of minimizing the quadratic form @ (x)= % (X, AX)-(x,b)= %xT Ax xTb.

So, anyway, | am not going into details of this.

(k)

(D) (),
L L

So, based on that, now we have to find out iteratively x; ty v

()

i

iterative process, iteratively we use this to get a solution for this kind of system for which the

v; is the direction vector and t; is step length which needs to be obtained so that this kind of

quadratic form is positive definite matrix real and symmetric.

So, a class of method can be generated by this. So, | am not discussing details on that. So, any
book can be followed to which you will talk in the tutorial sit so this quadratic form can be, | mean

based on this quadratic form, we can derive those conjugate gradient method or others.
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So, we will talk about a algorithm for computing the Eigen value or Eigen vector for a special type
of matrix A, say a matrix A if A has a dominating Eigen vector and eigen value. So, let A has the
following two properties or the matrix A as the following two properties. One is it has the largest
eigen value. There is a single Eigen value of maximum modulus. And, two, there are n linearly

independent Eigen vectors.
Now, A; — dominant eigen value. So, then

[ ALl > ] Az] = |A] = |A3] > ..... > |A,| etc. So, this largest Eigen value exists uniquely and v, —
corresponding Eigen vector is called the dominant Eigen vector. So, dominant Eigen value and

dominant eigen vector. This is the method called the power method.

So, it is basically a repeated, start with a trial Eigen vector say and then we repeatedly multiply
this with, at every iteration we multiply with a given matrix A and then what will show that
converges to the Eigen vector and the maximum modulus of that Eigen vector that approaches to

the corresponding dominant Eigen value.

So, let x(® be any vector and say let x(® we consider as x(® = (1 1 1 1) a starting vector and

then get the sequence {x(*} sequence y® = A x® and then what we do x*+D=_—— ®

Ck+1

y >0 where Cy.,is the component of largest magnitude of y ),



So, that means, y®)= {yl(k), yz(k) ----- o } :

Then

Cry1 = Max |yl.(k)| is basically the maximum of yi(k) 1<i<n,k>0.So, the maximum modulus
or magnitude is 1 and all are less than 1. So, then what we can say that, then the sequence x*) and

Ci will converge to the dominant Eigen vector.

So, let us call it v; and Eigen value and corresponding Eigen value, so that means that is the
dominant Eigen value, corresponding Eigen value A, that is what we said is x*) - v, and C, —
A, as k — oo, So, this is the algorithm which is referred to as power method. So, every iteration

we are multiplying we start with a initial guess x,, component as 1.

and then every iteration we are multiplying with the matrix A and getting the x®*1) and rather
y® then we are normalizing or scaling this is the scale this x®*1) s the scale of y®*) which
is having dividing by the maximum modulus component of maximum modulus Cy, 4. So, at the
when iteration becomes tending to infinity. So, at a large iteration step what we find that these

x®) tends to the corresponding dominant Eigen vector and C, tends to the Eigen values.

So, now, how this happening, what is the, how to prove that | am not giving a details proof. So, |
LAax®=1 LA D=1 g2 G102

just giving an outline. So, x®+D =
Cr+1 Ck+1  Ck Ck+1ck

L4k x©

Ck+1ck..cq

Now x(© is any starting vectors.

(Refer Slide Time: 31:31)



BUEA5D0 &
forronencob. rillllllﬂllDDls-mu |

Uy <) Vo a%e v Lintacly indshendint £75m-veders
%w); dyVi FehVa b Fw Vv,
“ $0-
ka) AN, = aM , AL,V‘ VA oy,
T @ Ay

LR Yo

& "+9(V|V
Ll Y. 4 ” X,
b Oy by O Eo(—ld {’d»ﬂk‘/‘y* {'O/AJ 4

/Cu« Q-

Cl

E«,v\w»(h‘)*' (5 JJJ

- c . }\
24 " ,,_)lm‘l'l-{[,’v‘»-%'“-
\yﬂ\)\l\v\
= )",30 ar k) 00
“ Fa& —l\
L)
Uw X Z ﬂ(l\/\
D
e t\““)

w et eoporant ]
\-R i Vim o & 7'1

et a = 1. §$M)34v7

el
W X
kad o et G



GlEaba Waca’qd |
[forTomexc op foEnnmpnEnEcOn :(m*”Qﬂ J
\-R % ‘um ( \

ool sy

Y_Aﬁ CV—H .
W % ‘Tlf-‘( 61
Y " g ’ o
W»M Y i" j
LoV bV, w4

Cpp CLomvecse b 2,

Um Cpyy = 7\‘( )

(2]

o - Cotversmmee ¥ Aol
0 v ‘5\ x9= (101)] &

ko /-2 13 -1 J ) . :/1.
-y 24 1O 7@/: clb( "’1;)
(ﬁ/) L
= ¢ A

@hEssn N |
[fo/TomsExc of o[NNNRBEERAT0IN smum 2
T T 7

U -4 20 “OJIV@; (‘; 7','7’("""3) |

1

=AY

; \3 \| -5 1:_
\}): 'A'é :[—02 V7 '7‘ J Z 7/_{}}
-l Lﬁ -\0 \

-
4§

Now, what we can say this x(® say v, , v,.... v, are n linearly independent Eigen vectors. This is
already existed. So, this x® =a;v; + a,v,+. ... a,v,, a; # 0. So, any vector in R, x(© is
any vector in R™, so that can be because these are linearly independent. So, we can write as a linear

combination of that.

So, now, see this note A v; = A, vy, A%v; = MA v; =A%, and so in that way | can write that
A¥ v, = 1" v, . So, now, if I apply this property. So, now, what we have is what we have is 4

x(©, So, this x(®now, we substitute from here and apply this property.



1

So, what we getis x*+D=——— AK(A, vy . .. A, vy) = (ay M vy + ay A, v, +.

Ck+1.ck—1..cq Ck+1.cq
k

U Ay V)

Ak A A
=——"— (v +a (}\—2)"+ ...... a, (}\—")" v, ), k= oo,

k+1.c1 1 1

. . Ai . .
Now, what we know is | A{|>| A,| |>. . . .i.e, |,/\—‘| < 1, i=2....n, So that means, if | have then, so
1

this implies that :(%)" —»0ask - oo.
1

AR

Ck+1..C1

So, that means, as k — oo | take the limit k = oo so x*+D= Lim A vy

all are tending to 0. Now, x®*1 has the largest component as 1, but that is the way we have

constructed.

k
So, what | can say from here that is lim ol g So, this is one thing. And now, what we can

Ck+1..C1

see that. So, in that case we call this limit as the x(**1) So, if | take, so that means this sequence

x®) is converging to a sequence to the limit v, and if | the same way so, this is k — oo,

ay 7\1k—1

Ck....Cl

So, same way if | take =1

So, from there if | take the ratio so what I find that lim k — oo, Cj.1=A4

This is by definition {x®} converse to v; and the maximum modulus and ¢, and corresponding

Cr+1converts to A,. So, this is the thing.

So, this can be illustrated by an example say rate of convergence is slow, this is the one of the

0 11 5
drawbacks. So, if you have A= -2 17 -7 )
-4 26 -10

6 1/2
So, if | start with x° = (111)7, what do you have to first find out this y°= < 8 ):12 (2/3) =
12 1

C1X1



which comes out to be 6 8 12. So, now if you scale, so that means the maximum modulus so half

3 by, 2 by 3 1. So, this is becoming the x1, so this is equal to c1 x1.

0 11 5 1/2
So, once | have that, so, then c;x;is there. So, thenwe got y;=Ax* = -2 17 -7 ||2/3
-4 26 -10 1

7/10
:13—6 < 5/8 )z C,x@ so on, like that way the sequence are constructed. This is how the power
1

method goes to compute the eigen value. It is simple, but its rate of convergence is slow. Thank
you.



