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So, we will talk about some iterative methods we already discussed for solving the linear system 

of equation Ax= b. If it is a large system. we talked about Gauss-Jacobi iterative process, we are 

talking about Gauss-Jacobi, there we do is every equation we write as 𝑋𝑖
(𝑘+1)

= 
1

𝑎𝑖𝑖
 {𝑏𝑖 − ∑ 𝑥𝑛

𝑎𝑖𝑗 𝑗

(𝑘)
}  

j=1, k≥0, i=1, 2,. . . .n j≠I , this is the Gauss-Jacobi iteration that means the other part, so except 

the of course, this what they need is 𝑎𝑖𝑖 to be nonzero. So, if it is a diagonally dominant that 

guarantees convergence. Then there is an improvement that is what is the Gauss-Seidel iteration, 

so what we do there is we now when say this is the iteration, this is the points or the grid points or 

what you call the variables.  

 𝑥1 − − − − − 𝑥2 − − − − − 𝑥𝑖−1 − − − −𝑥𝑖 − − − − − 𝑥𝑖ℎ − − − − −  

this is say 𝑥1, 𝑥2etcetera, 𝑥𝑖, 𝑥𝑖+1, so I can call this as xi minus 1. So, when we come here 𝑥𝑖 so at 

a particular 𝑥𝑡ℎ iteration say. So, that means from k we are starting from 0, so at k plus 1 iteration 

k, maybe the k equal to 0 is a static one. So, add the k plus 1 iteration when we come to 𝑥𝑖,. So, 



that means, already we have obtained the solution from 𝑥1, 𝑥2, … , 𝑥𝑖−1up to that. So, Gauss-Seidel 

iteration make use of this.  

So, that means, what we do is 𝑥𝑖
(𝑘+1)

= 
1

𝑎𝑖𝑖
 (𝑏𝑖 − ∑ 𝑥𝑗

(𝑘+1)𝑖−1
𝑗=1 + ∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘)𝑛
𝑗=𝑖+1  ) 

So, k≥0 and i=1,2, …n. So, to start the iteration process 𝑥𝑖
(0)

 is assumed for all i=1,2, …n. So, this 

is already assumed, so this is the Gauss-Seidel iteration or Gauss-Jacobi iteration that already we 

have discussed and if it is diagonally dominant matrix, we have a convergence guaranteed but 

without failure of diagonally dominant also it can convert. 

Now, as can be seen that this is a linear process, so that means the iteration converge but converge 

at a slower rate unlike the new translation technique which is quadratically converge. So, that 

means, every step the error is reducing in a quadratic fashion. But here the error is going in a linear 

fashion. 

 



 

So, in order to accelerate the convergence, convergence acceleration, so there are one very easy 

technique is called the successive over relaxation technique, SOR in the short form. Now, this is 

something like that, suppose, you want to shoot a or hit a flying bird. Now, what we do that we 

assume when we are targeting a position where we want to hit the bird we assume or we position 

little ahead of the bird where we are thinking about at the time of shooting. 

So, what I mean is that suppose you are here and there is a flying bird is moving. So, when you 

want to shoot this flying bird say something like this bird. So, what you do is you target this 

position this point and we assume that the time by which the stone or the whatever we are throwing 

so will hit the object the object will move to this position.  

So, this is the technique for SOR. So, that means, what we know that say this is the converge 

solution alpha for   𝑥𝑖
(𝑘)

--------𝑥𝑖
(𝑘+1)

 ------ 𝛼𝑖 → (converge solution), this is the converge solution. 

we know that we are moving in the right direction. 

So, that is why what we do is we take a extrapolation between these two values and we call that at 

the k+1 iteration our value is a little ahead of these Gauss-Seidel value, whatever the iteration 

values, so we call this as 𝑢𝑖
(𝑘+1)

, So, that means 𝑢𝑖
(𝑘+1)

 is written as 𝑢𝑖
(𝑘+1)

= 𝑢𝑖
(𝑘)

+ω 

(𝑥𝑖
(𝑘+1)

−   𝑢𝑖
(𝑘)

 ), k≥0. 



And ω is a real some number called the relaxation parameter. So, one thing is that if ω=1 so 𝑢𝑖
(𝑘+1)

 

this modification we have not defined what is 𝑢𝑖
(𝑘+1)

is. So, before that let us call this with 𝑢𝑖
(𝑘+1)

 

is the modification of the Gauss-Seidel iteration 𝑢𝑖
(𝑘+1)

 at the iteration level (k +1). 

Now, at the iteration level (k +1). So, obviously if ω=1, so that means 𝑢𝑖
(𝑘+1)

 no modification equal 

to 𝑢𝑖
(𝑘+1)

no modification and what we find that if ω>1, so it is an extrapolation of  𝑢𝑖
(𝑘+1)

 and 

previous iteration 𝑢𝑖
(𝑘)

can be the 𝑥𝑖
(𝑘)

 or  𝑥𝑖
(𝑘+1)

and another thing is that if ω=0, so no 

improvement. So, normally omega cannot be zero so no improvement in solution. 

So, that means  𝑢𝑖
(𝑘+1)

= 𝑢𝑖
(𝑘)

and another important thing is that if ω<0, in that case  𝑢𝑖
(𝑘+1)

 is 

lying between  𝑢𝑖
(𝑘+1)

and 𝑢𝑖
(𝑘)

 . So, in this case this is called the under relaxation. So, 0 < ω <

1 is called the under relaxation, so where some cases what we find that the say under relaxation 

SUR is also called SUR. 

Now, 𝑢𝑖
(𝑘)

--------𝛼𝑖  − − − − − − − −𝑥𝑖
(𝑘+1)

, 𝛼𝑖is the converse solution and what we find that this 

is a  𝑥𝑖
(𝑘)

 or 𝑢𝑖
(𝑘)

and this is 𝑥𝑖
(𝑘+1)

 So, next step 𝑥𝑖
(𝑘+2)

. So, that means there is a either one time it 

is overshooting another time is under shooting like that way. So, that means it is exceeding the 

converged value. So, what we find that error is changing the sign. We do not know we may not 

have the idea of converged solution. 

So, what we find that error is or some case is bigger some case is smaller values so if that is the 

case then we apply that under relaxation technique. So, in between values 𝑥𝑖
(𝑘+1)

So, normally what 

we do is this either successive over relaxation or under relaxation we applied when after few steps. 

So, that means for certain k >K finite number of iteration after few iteration level few iterations 

we apply this technique and then at that point we know that whether the error is successively 

reducing or it is oscillating. So, that means, either it is going up going positive going negative, so 

in that case we which kind of technique we will use. Now, whether 0 < ω < 1  or 1 < ω < 2  that 

called the over relaxation. Now, one thing is that it can be proved easily that the relaxation 

parameter omega must rely on ω to be picked in the range 0 < ω < 2  if one which guarantees the 

convergence. 



But failure of that does not imply that it is not convergent, convergence of iteration. So, this is how 

the improvement of convergence is meant. Now, so there it is normally Gauss-Seidel iteration so 

𝑥𝑖
(𝑘+1)

 we use by Gauss-Seidel iteration and then we come to the stage, the stage 𝑥𝑖
(𝑘+1)

 by some 

Gauss-Seidel iteration apply here, get a modified value 𝑢𝑖
(𝑘+1)

 using the previous iterated values 

and that is called the SUR technique. ω is some value is prescribed and then we repeat the process. 

So, this is how the convergence acceleration can  meet. 
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Now, there are several other iterative process for solving like we are not going to talk about much 

descent method, class of method and then conjugate gradient method, so we are not discuss on 

much about this only thing I just want to give a overview for this so any book if you find I mean  

interested you can learn this conjugate gradient method a iterative process a class of iterative 

process which is refers the steepest descent method should there if you have a system  𝐴𝑥 =

 𝑏 where A is a n×n real symmetric positive definite matrix.  

Now, what is symmetric means 𝐴𝑇 = 𝐴 because it is a real. And what is positive definite means, 

positive definite. Now, if I call a quadratic form so any quadratic form say  = 𝑄(𝑥) = 𝑥𝑇  𝐴𝑥. So, 

if this  𝑄(𝑥) > 0 for all choice of x ≠0 then it is a positive definite matrix. So, a matrix is such 

that the quadratic form associated with this is positive always then it is the one which is referred 

as the positive definite.  



Now, this also can be written as x transpose Ax, so if I define (x, 𝐴𝑥) if I define the inner product 

between two vector (x y) = 𝑥𝑇 y. So, this is the inner product. Now, we have also show that this 

can be written as since 𝐴𝑇 = 𝐴, so this we can write as this Q(x)=(𝐴𝑥)𝑇𝑥 = (x, Ax) inner product. 

So, if such a matrix are there, which are positive definite, so that means  

Q(x)=𝑥𝑇Ax = ∑ 𝑎𝑗𝑘 𝑥𝑗𝑥𝑘  so if this kind of form if I write then it is a positive definite. So, this 

quadratic form is always ≥0 a material of whatever the value is. So, for all x, oh this is positive for 

all 𝑥𝑗≠0, Now, j,k 1 to n.  
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 There is a theorem. Based on this theorem all these steepest descent methods conjugate gradient 

methods are all derived is if A is a real n×n symmetric positive definite matrix and b is a n×1 

vector.  

Define a quadratic form as 

  ∅(𝑥) = 
1

2
𝑥𝑇Ax-𝑥𝑇𝑏  

then the minimizer of ∅(𝑥) is the solution of Ax = b. 

In other words, this quadratic form has minimum value if Ax = b is satisfied that is those x which 

are the solution of the linear system. In other words, solving that is solving a system Ax = b is 



equivalent to the problem of minimizing the quadratic form ∅(𝑥)= 
1

2
 (x, Ax)-(x,b)= 

1

2
𝑥𝑇 Ax 𝑥𝑇𝑏. 

So, anyway, I am not going into details of this. 

So, based on that, now we have to find out iteratively 𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)

+𝑡𝑘 𝑣𝑖
(𝑘)

 

 𝑣𝑖
(𝑘)

 is the direction vector and 𝑡𝑘  is step length which needs to be obtained so that this kind of 

iterative process, iteratively we use this to get a solution for this kind of system for which the 

quadratic form is positive definite matrix real and symmetric. 

So, a class of method can be generated by this. So, I am not discussing details on that. So, any 

book can be followed to which you will talk in the tutorial sit so this quadratic form can be, I mean 

based on this quadratic form, we can derive those conjugate gradient method or others. 
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So, we will talk about a algorithm for computing the Eigen value or Eigen vector for a special type 

of matrix A, say a matrix A if A has a dominating Eigen vector and eigen value. So, let A has the 

following two properties or the matrix A as the following two properties. One is it has the largest 

eigen value. There is a single Eigen value of maximum modulus. And, two, there are n linearly 

independent Eigen vectors.   

Now,  λ1 → dominant eigen value. So, then  

| λ1| > | λ2| ≥ |λ2| ≥ |λ3| ≥ ….. ≥ |λ𝑛| etc. So, this largest Eigen value exists uniquely and 𝑣1 → 

corresponding Eigen vector is called the dominant Eigen vector. So, dominant Eigen value and 

dominant eigen vector. This is the method called the power method. 

So, it is basically a repeated, start with a trial Eigen vector say and then we repeatedly multiply 

this with, at every iteration we multiply with a given matrix A and then what will show that 

converges to the Eigen vector and the maximum modulus of that Eigen vector that approaches to 

the corresponding dominant Eigen value. 

So, let 𝑥(0)  be any vector and say let  𝑥(0) we consider as 𝑥(0) = (1 1 1 1)𝑇 a starting vector and 

then get the sequence {𝑥(𝑘)} sequence   𝑦(𝑘) = A   𝑥(𝑘) and then what we do   𝑥(𝑘+1)= 
1

𝐶𝑘+1
   𝑦(𝑘) 

   𝑦(𝑘)≥ 0 where  𝐶𝑘+1is the component of largest magnitude of   𝑦(𝑘).  



So, that means,   𝑦(𝑘)= {𝑦1
(𝑘)

, 𝑦2
(𝑘)

. . . . . 𝑦𝑛
(𝑘)

 } . 

Then 

 𝐶𝑘+1 =  𝑀𝑎𝑥 |𝑦𝑖
(𝑘)

| is basically the maximum of 𝑦𝑖
(𝑘)

  1 ≤ i ≤ n , k ≥ 0. So, the maximum modulus 

or magnitude is 1 and all are less than 1. So, then what we can say that, then the sequence 𝑥(𝑘) and 

𝐶𝑘 will converge to the dominant Eigen vector. 

 So, let us call it 𝑣1 and Eigen value and corresponding Eigen value, so that means that is the 

dominant Eigen value, corresponding Eigen value  λ1 that is what we said is 𝑥(𝑘) → 𝑣1 and 𝐶𝑘 → 

 λ1  as  k → ∞. So, this is the algorithm which is referred to as power method. So, every iteration 

we are multiplying we start with a initial guess  x0, component as 1. 

and then every iteration we are multiplying with the matrix A and getting the   𝑥(𝑘+1) and rather 

  𝑦(𝑘) then we are normalizing or scaling this is the scale this   𝑥(𝑘+1) is the scale of   𝑦(𝑘)  which 

is having dividing by the maximum modulus component of maximum modulus 𝐶𝑘+1. So, at the 

when iteration becomes tending to infinity. So, at a large iteration step what we find that these 

  𝑥(𝑘) tends to the corresponding dominant Eigen vector and 𝐶𝑘 tends to the Eigen values.  

So, now, how this happening, what is the, how to prove that I am not giving a details proof. So, I 

just giving an outline. So,   𝑥(𝑘+1) =
1

𝑐𝑘+1
 A 𝑥(𝑘)= 

1

𝑐𝑘+1
 . 

1

𝑐𝑘
 A   𝑦(𝑘−1)= 

1

𝑐𝑘+1 𝑐𝑘
 𝐴2  𝑥(𝑘−1). . . .= 

1

𝑐𝑘+1 𝑐𝑘 ....𝑐1

 𝐴𝑘  𝑥(0) 

 

 Now  𝑥(0) is any starting vectors. 
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Now, what we can say this  𝑥(0) say 𝑣1 , 𝑣2 . . .. 𝑣𝑛 are n linearly independent Eigen vectors. This is 

already existed. So, this  𝑥(0) =𝛼1𝑣1 + 𝛼2𝑣2 + . . . . 𝛼𝑛𝑣𝑛 , 𝛼1 ≠ 0.  So, any vector in 𝑅𝑛,  𝑥(0)  is 

any vector in 𝑅𝑛, so that can be because these are linearly independent. So, we can write as a linear 

combination of that. 

So, now, see this note A 𝑣1  =  λ1 𝑣1 , 𝐴
2𝑣1 =  λ1𝐴 𝑣1  = λ1

2𝑣1 and so in that way I can write that 

𝐴𝑘 𝑣1  =  λ1
𝑘
  𝑣1 . So, now, if I apply this property. So, now, what we have is what we have is 𝐴𝑘 

 𝑥(0). So, this  𝑥(0)now, we substitute from here and apply this property.  



So, what we get is  𝑥(𝑘+1)= 
1

𝑐𝑘+1.𝑐𝑘−1 ....𝑐1

 𝐴𝑘( λ1 𝑣1 .  .  .  .  λ𝑛 𝑣𝑛) = 
1

𝑐𝑘+1.𝑐1

( 𝛼1 λ1
𝑘𝑣1 +  𝛼2 λ2

𝑘𝑣2 +. 

. . 𝛼𝑛 λ𝑛
𝑘𝑣𝑛 ) 

= 
 λ𝑛

𝑘

𝑐𝑘+1..𝑐1

 (𝛼1 𝑣1 + 𝛼2 (
 λ2

 λ1
)𝑘+……𝛼𝑛 (

 λ𝑛

 λ1
)𝑘 𝑣𝑛 ), k → ∞. 

Now, what we know is | λ1|>| λ2| |> .  .  .  .i.e., |
 λ𝑖

 λ1
| < 1, i=2….n, So that means, if I have then, so 

this implies that =(
 λ𝑖

 λ1
)𝑘 → 0 as k → ∞. 

So, that means, as k → ∞ I take the limit k → ∞ so  𝑥(𝑘+1)= Lim 
 λ1

𝑘

𝑐𝑘+1..𝑐1

 λ1 𝑣1  

 all are tending to 0. Now,  𝑥(𝑘+1) has the largest component as 1, but that is the way we have 

constructed. 

So, what I can say from here that is lim 
 𝛼1 λ1

𝑘

𝑐𝑘+1..𝑐1

=  1 So, this is one thing. And now, what we can 

see that. So, in that case we call this limit as the 𝑥(𝑘+1) So, if I take, so that means this sequence 

 𝑥(𝑘)  is converging to a sequence to the limit 𝑣1  and if I the same way so, this is k → ∞.   

So, same way if I take  
 𝛼1 λ1

𝑘−1

𝑐𝑘....𝑐1

= 1 

So, from there if I take the ratio so what I find that lim k → ∞, 𝐶𝑘+1=λ1  

This is by definition  {𝑥(𝑘)} converse to 𝑣1  and the maximum modulus and 𝑐𝑘 and corresponding 

𝑐𝑘+1converts to λ1. So, this is the thing. 

So, this can be illustrated by an example say rate of convergence is slow, this is the one of the 

drawbacks. So, if you have A= (
0 11 5

−2 17 −7
−4 26 −10

) 

So, if I start with 𝑥0 = (111)𝑇, what do you have to first find out this  𝑦0= (
6
8

12
)=12 (

1/2
2/3

1

) = 

𝑐1𝑥1 



which comes out to be 6 8 12. So, now if you scale, so that means the maximum modulus so half 

3 by, 2 by 3 1. So, this is becoming the x1, so this is equal to c1 x1. 

So, once I have that, so, then 𝑐1𝑥1is there. So, then we got 𝑦1= A 𝑥1 = (
0 11 5

−2 17 −7
−4 26 −10

) (
1/2
2/3

1

) 

= 
16

3
 (

7/10
5/8

1

)= 𝐶2𝑥(2) so on, like that way the sequence are constructed. This is how the power 

method goes to compute the eigen value. It is simple, but its rate of convergence is slow. Thank 

you. 


