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Welcome back to lectures on Engineering Mathematics 2 and this is lecture number 3 on

Divergence and Curl of Vector Field. So, today we will cover the divergence of the vector

field  and  it's  geometrical  interpretation,  also  the  curl  of  a  vector  field  and again  its

physical interpretation. 
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So, coming to the divergence of a vector field, so, the divergence of a vector field v at a

point P is defined as by this integral which is actually a surface integral. This is done on

the surface here this delta S and this v dot n and this is surface integral which we will

learn extensively little later, but today a very special case of this, we will handle with the

help of the knowledge which we have gained in integral calculus. So, again here we have

this delta v, a volume and that is covered by this surface delta S around this point P and

this n is the outward normal pointing, this normal to this delta S. So, this is 1 divided by

the volume and this surface integral is done over this v dot n, and here the again the

limiting situation we will be considering that what will happen when delta v approaches

to 0. 

So, that is actually we are talking about the divergence at a point P, well, so, here we can

understand this that is the flux of the vector field v out of a small close surface because

we are talking about this v dot n. So, v the component of this vector field in the direction

of the normal and then we are integrating over the surface and then dividing by the total

volume taking the limit. So, it can be considered as the flux of the vector field out of a

small close surface around a point P. So, we will go into the detail a bit more about this

physical interpretation and the evaluation of such vector field. 



So,  for  instance  if  we talk  about  the  computation  of  the  divergence,  so,  this  surface

integral can be handled in a much more simpler way and the formula which turn up out of

this limiting situation, considering a volume around a point P. It is given by this divergent

P is equal to this del and the dot product with the v so, that means this del v1 over del x

plus del v2 over del y and del v3 over del set because this del here again to remind the del

was the operator, del over del x, the ith and del over del y, the j and del over del z in the

direction of this k. So this del operator, when we do this product, the dot product with the

vector field v then we will get naturally this del v1 over del x, del v2 over del y and del

v3 over del z. 
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So coming to the physical interpretation of the divergence of a vector field, so we will

consider a point is P at which we will compute the divergence and suppose we have this

vector field v defined around this point P. So, this is we have the some vector field v there

in  this  domain  and  around  this  P  or  at  P  we  are  going  to  compute  that  what  this

divergence signifies and how to compute this divergence. Eventually, we will see that the

formula which we have seen earlier that del, the dot product of the v, how this formula is

also appearing that we will also get through this interpretation. 

So, if you want to measure the rate here per unit volume at which this fluid flows out of

this box, so, then we need to compute precisely that surface integral which was defined in



the definition and we have considered a simple geometry here the box around this point P.

So, the evaluation of this surface integral will be much easier so, what we are going to do

now here the surface integral because here with the surfaces are these planes. 

So, we have this face here one, two, and then three, four and then there are two more

faces so, the five and six. So, there are six faces, which this geometry has. So, we will

compute the integral, the surface integral over these six faces, because this is the face,

this is the surface around this point P, the surface occupying some volume delta x, delta y,

delta z around this point P. So, this integral can be evaluated in a much simpler way by

considering the six integrals, one for each face of this geometry. 
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So, now, if we compute the flux outward across the S1 so, let us consider this surface S1

whose normal, unit normal vector is 1, 0, 0 because we are talking about so we have let

us say direction x here and then we have the y direction and the z, the vertical direction.

So, in this direction the unit normal vector is given by this 1, 0, 0. And now if you want to

compute  the  flux  across  this  that  means  that  integral  which  we  have  discussed  that

surface integral, so, in this case, the surface is just the plane here and the integral can

reduce to the double integral, the usual double integral which we have already studied.

And in that case, this v dot n because here the n is 1, 0, 0 so, only the first component of

this v will survive. So you are going to have this v1. 



And now at this phase here, if we talk about that, what is the x coordinate, so the x is

fixed here, so x and this distance from here to here is delta x, and this is the center so, we

have the x plus this  delta x by 2 which is  fixed over this  surface.  So,  this  v1, the x

component is fixed by the x plus delta x by 2, this is not wearing over the surface S1 only

the y and z will vary. So, we will make an approximation here to this integral so, this is

not a very formal mathematical proof, but just to give some idea, because later on we will

also consider the limiting situation that delta x, delta y and delta z they go to 0. 

So, in that case this approximation will become equality so, in this case we will just take

so, the v1 is evaluated at x plus this delta x by 2 and then we have y, z though we have

the integral over the y, z over this surface S1, but we have taken just the approximation

taking as  this  constant  value  over  this  surface,  but  again  as  I  said that  in  a  limiting

situation, this will become actually the equality. So, then this is the area of the surface

which is coming out of this integral and similarly, we can do this for the S2. So, the

difference in S2 is that we have this  minus 1 there.  So,  this  component  will  become

minus v1 and the x component will be x minus delta x by 2 because this is left to this

point x, y, z. So, in this case, we have now v1 and x is replaced by the x minus delta x by

2 and we have this y, z and again with the same argument we have written the surface

integral over this surface which is S2. 

Now, if we add these two that means the flux out toward across these two faces S1 and

S2. So, if we add the two so we have v1 and then we have minus v1 again at the x minus

delta x by 2. So, these two, the first argument here of v1 varies, this is x minus x plus

delta x by 2 and we have x minus delta x by 2. And now, we will apply the mean value

theorem. So, just to recall that we have for instance here f b and minus f at a and divided

by this b minus a. 

So, the mean value theorem says that, there will be a point between a and b where this

quotient will be equal to the derivative of f. So, here also you will apply for the first

argument, so, this derivative will become the partial derivative with respect to x and then

there will be some point between these two x minus delta x by 2 and x plus delta x by 2

this is I there, but again we will just write the approximately equal so, at the point x, y, z



because in the limiting situation again, this will approach to only this point P. So, we have

the partial derivative del v over, del v1 over del x and this delta x because we have to

divide by this delta x also to apply this mean value theorem term. So, you multiplied by

delta x and divide by delta x. So, this is delta x, delta y, delta z multiplied by this partial

derivative with respect to x. 
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Now, moving next, so, we have the flux across the S1 and S2 and this is what we have

computed. So, this delta x, delta y, and delta z that is we can also denote by the delta v,

the volume of this box and then similarly from other faces also we can compute this

easily so, for example, for S3 and S4 which is in the direction of this y. So, we have

similarly del v2 over del y and then the delta v and again for S5 and S6, which is here on

the bottom and the top one, so in the direction of z, so, we will get this del v3 over del z

and delta v. So, the flux per unit volume out of the box here, we can add all these and

divide by this delta y to get this per unit volume. 

So, that means, you will be adding del v1 over del x, del v2 over del y and del v3 over del

z. So, this is what we have this flux, and the flux per unit volume at P. So, exactly this

quantity  but it  is exactly equal because in the limiting situation these approximations

what we have taken for computing all these integrals will be actually equality. So, finally,

we have this formula for this flux per unit volume given by this del v1 over del x del v2



over del y and del v3 del z, which is the divergence which we denote buy this, divergence

v or we can also write down this as del dot v, the dot product of these two vector the del

operator and the vector v. 

So, what we conclude now that the divergence can be interpreted as the rate of expansion

or the compression of the vector field because this is the flux here, we have computed per

unit  volume at P. So, if it  is coming to be like positive that means,  at  that point the

tendency of the vector field is for the expansion. So, here its expansion and on the other

hand if this comes to be negative number, there is a tendency of compression at this point

for a given vector field. 
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So, this situation will be much more clear when we consider these examples. So, for

instance, if we take the vector field here, v is equal to x and 0, 0. So, in that case if you

compute the divergence, so, the divergence as discussed this is just the product with this

del operator of this v. So, since the two component are 0, 0 so, we will have only the first

component whose partial derivative is 1. So, we have the divergence for this given vector

field  is  1,  which  is  positive  that  means,  the  tendency  of  this  vector  field  is  for  the

expansion. So, the tendency of the fluid if we consider that this is the velocity field for

the fluid than this signifies that the tendency of the fluid at that point is the expansion. 



So, if you plot this, if you visualize this vector field whether how to visualize that we

have seen already yesterday, then you can see here for instance, this is a very small, then

it is increasing, increasing, increasing. So, as we are going away in this direction this

vector  field,  the  length  or  the  magnitude  is  increasing  and that  exactly  tells  that  the

tendency of the fluid is for the expansions, so we have small vector field big and then big

and then the bigger one. So, the tendency clearly also visible from this picture that the

fluid at any point indeed in this case, because this is one at any point so, the tendency at

any point of this domain here is for the expansion of the fluid. 
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For instance, if we consider the v is equal to minus x instead of this plus x so, that is the

only difference now, so, naturally the divergence will be minus 1 and in this case it is the

other way around, that the tendency of the fluid is for the compression and if we look at

the visualization of this vector field, then we can realize that something is happening in

the other direction now, that towards this line here the y axis, so, we do see that the

magnitude is becoming smaller and smaller. So, if we take any point anywhere, and then

we see  that  the  around this  point,  the  fluid,  the  tendency  is  for  the  compression,  so

because this divergence negative itself signifies that or we can visualize that and conclude

the similar effect. 



(Refer Slide Time: 15:45) 

Another example if we take for instance 0, x, 0 and the vector field is given by the 0, x, 0

and the divergence v, in this case will be 0 because del over del x it is 0, del over del y for

this x will be also 0 and then component is also 0, so the divergence v is 0 in this case. So

now what this tells that the, the vector field is neither expanding and not contracting at

any point, actually, because this does not depend on a point so it is a 0 everywhere. So

this is what we should also see from the visualization. 

So if we visualize this vector field, so this is what happening at for instance, you consider

at some x here so, the vector field is of the magnitude is the same. So there is not like, the

magnitude is increasing so, any value x here we fix then in this direction, there is a flow

but the magnitude is same. So there is no tendency here that the fluid is expanding or

contracting. Indeed, so that is what also clear from the visualization as compared to the

earlier figure, it is clearly visible here that the divergence is 0. 

What we will see later on there is another term which we will use to also define such

fluid that is curl, which signifies the rotation of the, or the tendency of the rotation of the

fluid and in this case it is clearly visible that because here the magnitude is increasing,

here the magnitude is decreasing and so on. So, there is a clear tendency of the fluid that

there is a rotation happening, if you place some object in this fluid here, so, because the



magnitude, this side is more than this side, so, there will be a rotation of this object so,

that is what we will see now next. 

So, there is a one more point here that the vector field v for which this divergence is 0,

everywhere is called Solenoidal. So, for instance, for this vector field the divergence is 0

everywhere. So, this vector field is called Solenoidal or this relation divergence v is equal

to  0  is  also  known  the  current  condition  of  incompressibility  because  there  is  no

compression or contraction happening here. So, this is the condition for incompressibility.
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Now, coming to the vector, this curl of a vector field, we will define now that the curl of a

vector given by this v1 v2 v3 this is given by the curl v is equal to the del and the cross

product now, instead of the dot product, now we are talking about the cross product with

this vector field v. And naturally this cross product we can define so, i, j, k and these are

the component of the del here del over del x del over del y del over z, and then the

component of v so v1 v2 v3. 

So, if we simplify this, so, with this component i will have del over del y v3 and then here

del v2 over del z similarly, for j we have this del v1 over del z and del v3 over del x for k

we have del v2 over del x and then we have del v1 over del y. So, this is the expression



for evaluation of the curl and now, we will see in the next slide that what this signifies

physically. 

Now, let us just take an example to evaluate this. So, if our vector field is given by this y

2xz and this ze power x, in that case we can evaluate this curl v, i, j, k again these are the

components of the del operator, these are the components of this v operator, so, we can

compute this. So, we have del v3 over del y so v1 v2 v3. So, this is v3 with respect to y

that is going to be 0, v2 with respect to z so, v2 with respect to z we will get this minus 2

x there, when we compute for the component j so, we have del over del z of y that is 0

and minus with del over del x of ze power x so, ze power x will come and similarly, we

can compute for the case so, del over del x here, so, we have two z and del over del y for

this y so, that is 1 there. So, we have this expression for the curl v of this given vector

field so, by simple product here, the cross product we can compute curl of a vector field. 
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So coming to the physical interpretation of the curl  of a vector field we suppose, an

object here, it rotates in a clockwise rotation, anti-clockwise rotation here in this situation

with the uniform angular velocity, this omega, so we have the angular velocity, given here

we have the tangential velocity, and this is the angle theta with the axis of rotation to this

circular path here, that is given by the r, vector and this is theta and then we have this

radius of that circular path. And this is theta, then this distance here or the radius we call



it so this is given by the length of this vector or the magnitude of this vector. And the sin

theta  so,  this  is  the  90 angles  and so this  will  be r  the magnitude  of r  cos theta  so,

magnitude of r cos theta and the vertical one this will be the absolute value of r or the

magnitude of r with this sin theta. 

So, this is what we have here, the absolute value or magnitude of r and sin theta this

distance. And we know the relation that the tangential velocity that is or the speed rather

to say speed this  v is angular speed into this  radius, which we have just seen that is

absolute value of this r, the magnitude r sin theta. 

So, we can say that the tangential speed that is a magnitude of v is equal to the angular

speed that is the magnitude of this omega and the radius which is given by the magnitude

r sin theta. So, this we can write we know that this is precisely the cross product, the

magnitude of the cross product of omega and r. And now what we also note down that the

direction of this v, so, you can just visualize this motion. So, there is this r vector which

from the origin, it connects to this perimeter of the circular path, and then we have the

tangential component there. 

So,  the  tangential  component  which  is  given  by  this  velocity  v,  so,  these  two  are

perpendicular because this tangent on the circle will be perpendicular to the line which is

meeting to this arc here. So, what we observed that this v is perpendicular to r and also

perpendicular to the omega. So, we have this axis of rotation and then there is a rotation

there. So, this vector v is also perpendicular to this axis of rotation and this is all also

perpendicular to the line which is meeting to the origin there. 

So, this v is perpendicular to r and omega since, this v the velocity, the linear velocity or

the tangential velocity, and this r cross omega, which we have just observed there that

though the magnitudes are same and both have the same directions, because the direction

of the v is perpendicular to both the r and the omega. So, that means, the v and this r

omega they are the same actually because they have the same direction and they have the

same magnitude. So, we can conclude that this tangential velocity not indeed the speed

tangential velocity is equal to this omega and the cross border product with this r so, if we

assume that r is xi yj zk and omega is ai bj and ck, in that case we can compute this v by



this cross product of omega and this r which is given by this determinant and which we

can simplify here. So, we get this bz minus cy cx minus az and ay minus bx as the third

component. 
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So, we have this vector field v which is bz minus cy and cx minus az second component,

the third component ay minus bx. So, if we now consider this curl of v that means, the

cross product of del and v so, v is given by this expression there. So, we again compute

this determinant and we will see that we get 2ai and 2bj and 2ck out of this determinant.

So, what does that mean? That this is two time's the omega so, here we have the curl v is

equal to two times this omega, which is the angular velocity. 

So, what its signifies the curl v which is given here, the curl v is two times omega, it

signifies a tendency of rotation, because this is nothing but the two times the rotational

velocity, the angular velocity of that particle or that body there. So, the curl v is directed

along so, it is the same the curl v, the direction of this omega, the angular velocity that is

the axis of this rotation and the magnitude is twice the angular speed. So, that is the

physical interpretation which is clearly visible with this mathematical formulation that

the curl v is equal two the omega, the angular velocity. So, a vector field v for which the

curl is 0 everywhere is said to be irrotational so, that is the term we use normally, that this



is a irrotational if this is 0, if this is not 0, then the fluid has tendency of rotation, whether

clockwise, anti clockwise that depends on the situation there.
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Let us just consider this example, that v is given by either plus or minus this x, 0, 0. So, if

we compute, if we compute this cross product or the curl of v, then we realize that this is

0 in this case, irrespective of the plus or minus sign. So, that means there is no sense of

rotation, the vector field is irrotational. And if we plot these two vector field with plus

one and then the minus one, then we do see that indeed there is no rotation, there is no

tendency  of  rotation.  So,  if  this  is  the  flow just  the  magnitude  is  increasing  in  this

direction and it is the same for the next as well. So, there is no tendency, if you place

some object there, it will not rotate. And similarly, here also it will not rotate and we have

seen that there was a tendency of the fluid to compress in this case or for the expansion in

this case, but there is no rotation. 
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So, we take the next example where 0, x, 0 is the vector field and in this case if we

compute the curl it is coming to be k. So, the rotation is about the axis in the z direction

so, that is just the k. 

And if you visualize this vector field, then we can realize that, so, for instance this and

then increasing, increasing, increasing so, in this direction increasing so, if you place this

object this will move, this will rotate because here you have the larger magnitude of the

vector field as compared to the left. So, this object will start rotating and so, there is a

tendency of rotation and again this thumb rule will be applicable. So, if you have anti

clockwise rotation, then this is the axis of rotation in the direction of this thumb. So, here

it is exactly the k, the axis of the rotation is in the z direction. 
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So, here we have the references, these are used for preparing this lecture. And to conclude

that we have learned that the divergence of a vector field v is given by this dot product or

finally, this is just the sum of these partial derivatives. And we have also seen that the

physical interpretation says that this tells the tendency of the vector field to expand or to

compress. So, which is visualized here again the second thing we have studied the curl of

v, which was defined by this cross product of this del and the vector field v. And we have

also realized that the value of this curl tell something about the rotation, so, the tendency



of the rotation  of  the vector  field.  So,  that  is  all  and thank you very much for your

attention. 


