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So, welcome back to lectures on engineering mathematics 2 and today we will begin with 

module 3 on numerical analysis. So this is lecture number 21 on iterative methods for solving 

system of linear equations. 
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So, starting with the introduction to the iterative methods for solving system of linear 

equations we will basically discuss in detail two methods one is the Jacobi iteration method 



the other one is the Gauss-Seidel iterative method. So these two are the classical iterative 

methods which we will derive today in this lecture. 
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So just to begin with to remind the consistency of a linear system which was also discussed in 

engineering mathematics 1 in this action of linear algebra. So, here we are talking about let us 

say the system of linear equations having m equations n unknown. So this A the matrix A 

having dimension m cross n, so there are m rows and n columns. Similarly this vector x here 

has n rows and then similarly this vector b has m rows there. So we have this A m cross n and 

then n cross m this vector x and then this vector b having the m rows. 

So now if we have the case here m equal to n what happens we call this as a balance system 

when m so the number of equations are greater than the number of unknowns then we call 

such as system as over determined system and the third case when m is less than n, so the 

number of equations are less than the number of unknowns then we call such a system as 

undetermined system. So just to recall that for balance system when we have the same 

number equations as the unknown here this K denotes the rank of matrix. 

So the rank of A equal to rank of this augmented matrix Ab so b is just augmented next to 

this matrix A. So if the rank of the matrix A is equal to this rank of matrix A augmented b 

and if this rank is equal to n then we have the case of unique solution that was well discussed 

in linear algebra. The second possibility when these two ranks, so the rank of A is not equal 

to the rank of Ab rank of augmented matrix Ab then this was the case of no solution and the 

third possibility when these two ranks are equal. 

So rank of A equal to rank of Ab but this number is less than equal to, or less than n. So in 

that case we have infinitely many solutions of the given linear system. The second now we 

have the over determine system again we have the possibility of having a unique solution that 

means if this rank of A is equal to rank of Ab and this number is equal to n then we have the 

case of unique solution from this over determined system as well. 

And when these two rank are not equal so the rank of A is not equal to rank of Ab then this is 

the case of no solution and the third possibility we have when this rank these ranks are equal 

but it is again less than equal to n it is very similar to the first balance system then we have 

again the case of infinitely many solutions. So for all determine system also we can have the 

possibility of unique solution, no solution and infinitely many solutions. 

The last case where we have the number of equations less than the number of unknown that 

means this undetermined system in this case we have 2 possibilities either this rank A is not 

equal to rank Ab in that case we have no solution but when this number is equal rank of A is 



equal to rank of Ab and naturally that rank is going to be less than n because the rank cannot 

be greater than m or n. 

So it should be less than m maximum of m and n. So when these the rank of A is equal to 

rank of Ab it has to be less than n, so it is eventually the case which we have discussed more 

infinitely many solutions for balance and over determined system. So here also when this 

rank is equal we do not have to say less than n because which is obvious. So in this situation 

we have again infinitely many solutions. 

So this is the overall tree for a general linear system having the equal number of equations as 

the unknown here the number of equations are more than unknown and here the number of 

equations are less than the number of unknowns, and each case we have seen the possibilities 

having the unique solution no solution and in the last case undetermined system we have two 

possibilities that there would be no solution or infinitely many solution here we cannot have 

the situation of unique solution because number of equations are less than the number of 

unknowns. 

So we can always assign some free variables in case there is a solution, so there will be no 

possibilities of having unique solution in that case. What we are going to discuss now the 

iterative methods in this course we are restricting our self to this balance system. So when the 

number of equations are equal to the number of unknowns and that too the situation when we 

have the unique solution. 

So only this case will be discussed now for the balance system when we have the unique 

solution in that case we will discuss now how to find the solution using the so called iterative 

methods. 
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So let us discuss the solutions for the system Ax is equal to b where A is n cross n matrix x is 

column vector of dimension n cross n, b is again a column vector of dimension n cross n. So 

we have n unknowns n equations and then we assume that the system is having a unique 

solution so what are the possible solution methods for such a system we have naturally the so 

called direct methods. 

Which and we have here the iterative methods so broadly they are two categories when we 

call the direct methods another one we call as iterative methods. In the category of this direct 

methods we have Cramer rule, which this students are familiar with we have the Gauss 

elimination method which was discussed in linear algebra engineering mathematics 1 and we 

have the Gauss Jordan method. 

So again similar approach and we have also many other the so called Decomposition methods 

etc. So it is a long list we will continue and in this categories when we are talking about the 

iterative methods the two well-known classical methods are the Jacobi method and the Gauss 

Seidel method, we have many more some of them are like Conjugate Gradient method, 

Conjugate Residual method etc. 

So it is again a long list for iterative method some of them are listed here. What are the 

characteristics of this direct methods they deliver exact solution so that is the beauty here in 

the absence of rounding of error they deliver exact solution of the given system like whether 

it is a Cramer rule or Gauss elimination, Gauss Jordan and many decomposition methods. So 

they deliver exact solution but there might be approximation due to rounding error etc. 

Whereas the iterative methods and that is the difference between the two category here they 

deliver approximate solution. So here there will be a sequence of solution which we will be 

obtaining they will be approximating the given system and we have to stop at some point of 

time depending on the set accuracy at the beginning. So here they end up with some kind of 

approximate solution and the accuracy will depend how many iterations we are doing to get 

the solution. 

Here there was a good point that they provide exact solution but the draw back here is that 

they are very expensive especially when they have they are used for large system then it is 

almost impossible to work with the direct methods because they are very, very time 

consuming and that is the reason that most of the time for practical problems we go for 

iterative methods because they are less expensive and through this iteration we can really 

solve very very large system where this direct methods are just restricted to a way small 



system of dimension 30, 40, 50 whatever. But when we have the order in thousands or lakhs 

then we go with these iterative methods. 
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Well so before we begin with the derivation of the method there are some terminologies 

which will be discussed which will be used. So one of them is what is diagonally dominant 

matrix? Matrix A is called diagonally dominant by rows and when we call this diagonally 

dominant by rows if ai, i is greater than, so the diagonal entry of the ith row let us say is 

greater than or equal to the sum of all other entry so except this j equal to i.  

So we are not adding again the diagonal entry. So except this diagonal entry when we add all 

element because here the submission is going over this j the second one. So if we have the 

matrix a11, a12, a13 that is the standard notation we use for the coefficients a23 then we have 

a31 a32 and then we have a33. So what we will do for each i so i corresponds to rows here. 

So i is equal to 1 for instance we have i is equal to 2 we have i is equal to 3 and so on. 

So for each i if we add the elements the absolute value except the first one now here in this 

case here we will leave this and add a21 and a23 as per this notation here will add a31 and 

a32, so if the diagonal entry has larger magnitude then the rest then we call diagonally 

dominant by rows. While it is called diagonally dominant by columns it is other way round, 

now if we go with the columns the first columns the first entry a11 should be greater than 

when we add all other elements of that column if it is greater than equal to the sum here and 

that we have to do for each i. 

So i equal to 1, 2, 3 and so on for a22 then a33 and so on for all these this has to be full filled 

so for each column now we will check this for each infect whether to write here a j j and then 

put here j is equal to 1, 2, 3 and so on because the matrix her going to be now a11, a12, a13 

a21, a22, a23 and a31, a32, a33. So the first column we will pick and then we will check 



whether the first entry is greater than some of the absolute values of the last two then in the 

column two. 

So j equals to 2 we will check again whether this and this sum is greater than is less than this 

value here and similarly we will check here whether this element here is greater than the sum 

of absolute value of the first two. So we will go with the column wise. So let us say here ajj is 

greater than i equal to 1. So we will sum in this direction for j equal to 1 than for j is equal to 

2 we will sum and j is equal to 3 we will sum all these. 

Well if the above any quality is hold in a strict sense then A is called a strictly diagonally 

dominant. So if we have greater than equal to we simply called diagonally dominant 

respectively by columns and rows but if these inequalities are strict then we call strictly 

diagonally dominant. So that is the one definition we will be using in following lecture or in 

this lecture. 
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Another terminology we are going to have it, it is a matrix norms just a brief very brief 

introduction the details are not provided here. So it is just to use these terminologies in these 

numerical analysis portion. So this is the number basically associated with a matrix that is 

often requires analysis of matrix base algorithm. So here also we are talking about now the 

matrix and these iterative algorithm based on the matrices. 

So here this number which is call the matrix norm it is a very useful for defining for instance 

the convergence etc. That slowly we will discuss, so this matrix norm give some notion of the 

size of a matrix because it is a number associated with each matrix. So we can for example 

compare 2 matrices in this sense or we can find the distance between the two matrix how 

whether they are close to each other or they are very different from each other. 

So those notions can be also captured with this matrix norms which we are going to define 

now. So some example of the matrix norm because there are many ways to define the matrix 

norms but some of them are very popular one very standard one we will state here suppose A 

is a n cross n matrix then one is called the Frobenius Norm which is defined as in this way. 

So we will square each element of the matrix and then take this square root so this is called 

the Frobenius Norm.  

So this is naturally going to be positive number which we are denoting by this norm A this is 

the notation for the norm and F stands for Frobenius. Row sum norm the other one is the row 

sum norm as the name suggest that we will sum each row and we will take than the maximum 

among these numbers. So the sum of each row of the absolute value the sum of the absolute 

value of each row will give a number and then we will find out what is the maximum among 

these numbers. 

That will be the row sum norm or we have the column sum norm where we will sum now 

each column and then among these values the sum of each column the absolute values of 

each element in a column that the maximum will be (())(17:01) and that is going to be now 

the column sum norm. So only these three norms at this moment we will adjust the state and 

later on perhaps we will go little more into the details. So these are the numbers associated 

with a matrix which are called Frobenius norm row sum norm and the column sum norm. 
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Now coming to the iterative methods so a method for solving linear system Ax is equal to b is 

called iterative if it is a numerical method computing a sequence of approximate solutions it 

will compute a sequence of approximate solution this x K we are denoting this x K, x is a 

vector which is the solution of this system here and xK is the sequence which is 

approximating this x. So x1, x2, x3 and so on and in such a way that should converge to the 

exact solution if we keep on going with sequence finally our solution should go to x to the 

exact solution. 

As basically the number of iteration goes to the infinity so such a method when we have a 

sequence of the solutions though the sequence are actually the approximation of the solution 

of the given system and if such a sequence goes to exact solution or this is what we call 

converges to the exact solution x as the iteration goes to infinity then we call that this is a 

iterative method. 



In many cases the sequence may not go to, may not converge to x and that is also part of 

discussion that under what condition this method actually particular method converges to the 

actual solution of the system. So what is the idea? This is the general idea of deriving an 

iterative method this is a very general approach here but we will go for specific cases in next 

slides. 

So consider for the system of linear equations Ax is equal to b having this n and cross n size 

of A and respectively the N cross 1 and N cross 1 size of P. So the idea for this iterative 

scheme is based on this splitting of the matrix A so we split this matrix in some kind of these 

matrices so matrix P minus the matrix N is giving us this A and in such a way that P is a non-

singular matrix, I am depending on this is splitting we will have a different, different 

numerical methods. 

But overall in each of these iterative methods we will do some kind of splitting in such a way 

that this one matrix P is non-singular matrix. So given the equations Ax is equal to b what we 

will do A we have written as P minus A and x equal to b or we can have this P times x is 

equal to Nx plus b. So we have formed here another equation where we have Px so the x is 

sitting left hand side x is also sitting right hand side and we know that the P is a non-singular 

matrix. 

So that we can invert it and having to have this x completely one x to the left hand side and 

the rest goes to the right hand side. 
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So having this Px is equal to Nx plus b from the given Ax is equal to b what we do now we 

can consider the iteration with a suitable gas that is another point here for each iterative 

scheme we have to also choose initial guess or initial solution to start with and that is what 

we call this x 0. So this Px K is equal to Nx K plus b this is what. So the left hand side of this 

x we have kept here the K plus 1 iteration given the value at the this kth iteration and that is 

exactly the point how we define the iteration here. 

Here the equation was Px is equal to Nx plus b here the x, this x will satisfy this equation 

exactly. So when x is a exact solution naturally this Px is going to be N x plus b because this 

is the given Ax is equal to b. So if we have a vector x which satisfy is this equation that is 

naturally the solution of the given system of equation. So having this Px is equal to Nx plus b 

what we do supply here the right hand side some known solutions starting with x 0 and then 

compute Nx plus b and then if this is equal to this P times x power K plus 1. 

And in this way we search for which what is the x K plus 1, so the value expected the 

improved value or let us first look at this, so this P is invertible matrix. So we have instead of 

writing this Px power k plus 1 not power the notations so k plus 1 and x K plus b so we have 

written finally in this form that x k plus 1 is equal to Gx K plus xb. 

So given a value here of this x K we will compute this Gx K plus Hb are that we will call this 

number as x K plus 1 because substituting some value of this xK there Gx K plus Hb is not 

given… will not be the exact solution because the exact solution will be Gx plus Hb when we 

give here the exact solution then only we will get here x this is the given system of equation 

but what we are doing here? We are putting some other value x K. 



So we have to start with for example x0. So we will first give here x0 we have to start with 

and then add this Hb there multiply with this G and this we will call this is our x 1. So which 

is suppose to be a better approximation than what we have a chosen at the beginning and then 

this x1 we will substitute there and then we will get a new and so on. So in this way we will 

proceed with the algorithm. 

So this G here which is P inverse n this is an very important matrix so called iteration matrix 

because the convergence of these schemes will depend on this iteration matrix and then here 

we have this H as just simply P inverse which is coming from there. So what is important 

here we have rewritten our system into this form the x is equal to this G x plus this Hb form 

this is our system Ax is equal to b is written in this form and from this we have setup iteration 

that provide there some values of x and then compute Gx plus this Hb and whatever we get 

this number let set to the value at K plus 1 iteration. 

And in this way when we trade this we are supposed to go towards the actual solution and 

this G plays a very important role which is called the iteration matrix of the given scheme. 
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So, now just few more definition for the convergence we are talking about the convergence of 

an iterative method, an iterative method is set to converge if for any choice of initial vector 

any choice of initial vector the sequence of approximate solution this x K converges to the 

exact solution then we call the iterative method converges is set to converge if for any choice 

any choice of the initial vector x naught the sequence of approximate solution converges to 

the exact solution x. 

And the definition of the error because we will be also talking about error. We call the vector 

r K b minus Ax K the residual or respectively the error, error is define as a x k minus x at the 

Kth iteration. So here there are two types of errors one is the residual which is b minus Ax 

because b minus Ax is supposed to be 0 if x is the exact solution because A x is equal to b is 

our system. 

But this is not 0 for those approximate solution. So we can have actually we can define I 

mean this gives the notion of the error itself and this is called the residual at the Kth iteration 

or the actual error is x K minus x but since the actual solution x may not be known. So this 

may not be used actually this error may not be computed because here we need this actual 

solution x. 

But this b is known A is known and x K is the approximate solution. So we can readily 

compute this b minus Ax K and that will give actually the notion of error which is called the 

residual. Just a remark, in general we have no knowledge about this eK because the exact 

solution x is unknown. However it is easy to compute the residual this rK so the convergence 

normally is dedicated to the residual in practice. 

So when we talk about the convergence in practice we check whether this b minus Ax K is 

close to 0 or it is going towards 0. So this is based on this residual only. 
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Now coming to the Jacobi iteration method, if we consider the system Ax is equal to b. So 

here now we can derive this particular type of iteration method. So take this splitting of A as 

A is split into L plus D plus U. Here we call the lower triangular matrix, this is the D is the 

diagonal entries of A so the diagonal matrix and U is upper triangular part of A. So if you 

have this type of splitting of A the lower portion here below this diagonal we call at L and 

then here we call this U and the middle one is the elements of the D. 

So this is lower triangular having these elements L and the rest will set to be 0. In D only this 

D1, D2, D3 and Dn will be there in the matrix rest everything will be 0 in the upper one. We 

will have this upper entries of the matrix and the rest everything will be set to 0. 
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So having this splitting now A is equal to L plus D plus U, what we do? Ax is equal to b can 

be written now in this form L plus D plus U x is equal to be. That means now we take the D 

with the x and rest everything to the right hand side from here we will set up the scheme. So 

we have Dx is equal to minus L plus Ux is equal to b that is our equation and assuming that D 

inverse exist because D are the diagonal entries. 

So assuming that the D inverse exist we can write down x is equal to minus D minus 1 the D 

inverse L plus Ux and D inverse b from here now we can set up our scheme that the left hand 

side we can put the value after K plus 1 at iteration given the values at Kth iteration. So the 

iteration method is given by this scheme now x K plus 1 is equal to minus D inverse L plus U 

x K plus this D inverse B this is the so called the Jacobi iterations method the only important 

point here is that A was splitted in this form and the D was taken for this inverse to the right 

hand side and we have this relation for x actual x. 

And then for approximate x supplying here we are getting the new value of x K plus 1. So in 

component form this we can also write in component form because this is written in matrix 

form so this is the matrix form but we can also write in component form. So component form 

means that all these unknowns x1, x2, x3 xn we have n unknowns this is exactly coming from 

this matrix form itself this D inverse because this was the diagonal entries. 

So only this 1 or ii, aii element will come here and D inverse b again so this bi will come the 

D inverse is already sitting there for the i th row. So bi and then the see here L plus U, so 

except this diagonal entry the rest are summed up. So a ij with this xj the Kth 1. So we will 

discuss this bit more in the next lecture. So there are two forms one is the diagonal form 

another one is the component form. 
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So now coming to this Jacobi only this is what we have seen either this form or whatever this 

form they are same form this we can rewrite here this one we can rewrite as 1 over ai bi 

minus this submission. We have splitted into two because the J is not equal to i we are not 

considering the i th entry there for the sum when j is equal to i so basically what we are doing 

when the sum is up to j less than i and then the sum is for j greater than i. 

So this we can also rewrite in this form and this is exactly the point now we can derive the 

another method Gauss Seidel method which is usually or supposed to be a better 

approximation then the Jacobi method what we do in the Gauss Seidel method here this all 

values of x are kept as K th iteration and then all values of this X i this x1 x2 x3 xn they are 

computed at K plus 1 th iteration. 



So all the values here of the previous iteration are used in the right hand side to compute the 

new values what is the idea of the Gauss Seidel method that newly computed components. So 

whenever we have computed for instance here x1 this x1 should be used there instead of the 

values from the previous iteration when x1 x2 is available so then we should use this x1 x2 to 

get x3 for instance.  

This is the idea of the Gauss Seidel, so this is scheme basically becomes that whenever j is 

less than i will be using this computed values and j greater than i we will all obviously use 

from the previous iterations so that is the only difference in this two. Here the K th values are 

used here k plus 1 at so newly computed values of x are used in the algorithm. 
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So we have this is the Gauss Seidel method and in matrix form again we can write this so this 

will free for to compensate this D1 then we have this for b and then here this is the lower part 

of the matrix is used here L x k plus 1 and there you have Ux the values are used here at K th 

iteration. And now we can just do a bit more simplification, so here the L can go to the left 

hand side so we have D plus L so first we will multiply by D there. 

So we have Dx and here plus L x is equal to this one and then we can invert it so finally in 

the matrix form we have this algorithm that x K plus 1 is equal to minus D plus L inverse and 

the upper triangular matrix x K and D plus L minus 1 b. So there is only slight difference in 

the Gauss Seidel method than the Jacobi method that in Gauss Seidel we are using the 

recently computed values and as a result this matrix form takes this form where D plus L 

inverse U and here D plus L inverse b is coming. So this is the iteration matrix for the Gauss 

Seidel method. 
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Well so these are the references we have used for preparing this lecture and in this lecture we 

have introduce the idea of the iterative methods and in particular we have derived the Jacobi 

method and the Gauss Seidel method and they slightly differ from each other at this 

expression here. So the values of x recently evaluated values are used in this case all the 

values from the previous iterations have been used for the computation of the new values. 

Well so that is all for this lecture and I thank you for your attention. 


