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Residue 

So, welcome back to lectures on Engineering Mathematics 2. So, this is lecture number 20 on 

Residue and this is the last lecture on this module Complex Analysis.  
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So, today we will be talking about what are the Residue and how to evaluate the residue and 

the most important theorem of this topic is the residue theorem which has application for 

evaluating a several complex integrals. So, you will also cover some portion for this 

evaluation of complex and integrals 
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So, coming to the residue, so suppose this f z, a function which is analytic for all z except this 

z equal to z naught which is an isolated singular point of this function f z. So, the previous 

two chapters where we have discussed the singular points and also the expansion particular 

the Laurent series expansion that will be very useful to discuss this residue now.  

So, the Laurent series of this f z about this z equal to z naught we can have a such term so the 

positive powers and the negative powers and where this bn this coefficient we can compute 

with the help of such integral that was already discussed in this topic where we have covered 

the Laurent series and just to recall we have this mentioned there, that this coefficient b1 the 

first coefficient or the coefficient of this 1 over 1 minus z. There it is called residue and now 

we will go more into the detail that what are different kind of and how to evaluate residues 

and then what are the applications of this residue. 

But this coefficient b1 in this Laurent series expansion, the coefficient of 1 over z minus z 0, 

is called residue of this f z at this z equal to z naught point and remember this z naught is the 

isolated singular point of this z naught. So, now the b1 here which exactly directly coming 

from this integral it is 1 over to 2 Pi and f z, z minus z naught power this minus n plus 1. So, 

if n is 1 then this becomes 0. So, there is no term z minus z naught here.  

So, this is a simple integral for this b1 equal to 1 over 2 Pi i and integral f z d z. So, indeed 

this is exactly the point why we are discussing this residue here. So, if we take a look at this, 

this integral over this C which is a curve which bounds exactly this point z naught is equal to 

2 Pi i into b1.  
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So, many complex integrals which are complicated to evaluate we can get the value with the 

help of this formula which says that this integral is going to be 2 Pi i into this b1. So, if we 

can find not using this formula naturally this b1 we will try, we will not use this formula in 

the expansion of also the Laurent series expansion if you remember we did not use this 

formula to evaluate these coefficients because computation of these complex integrals may be 

complicated.  

So, by some other means we have expanded the function in terms of the Laurent series. Once 

we have the expansion we can get the b1 and once we have b1. We indeed we can get this 

integral. So it is goes other way around, to evaluate this integral we use this Laurent series 

expansion and then we can get b1 and we have this integral ready. So, but there are other 

ways also to evaluate this b1 the residue b1. So, we will now discuss in detail that how to get 

the residue at a point z equal to z naught which is isolated singular point of f z. 
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So, how to calculate the residue first we will discuss this and then later on using the formula 

we have just discussed we will evaluate some integrals. If z equals to z naught is a removable 

singular point and now the classification is coming into the picture. So, we have a singular 

point and if it is a removable singular point. Then we know that there is no term in the 

principle part of the Laurent series expansion and in that case if it does not have a principle 

part it does not have the negative powers of the z minus z naught. 

So, naturally this b1 is going to be 0 and that means the residue is 0 which clearly says that 

this integral, the curve integral, curve is taken the curve enclose the simple closed curve 

which encloses this point z naught. So, this is going to be a 0 value of this integral which is 



Cauchy integral theorem also can give us this result when we have a removable singular point 

that is the important point here to be noted. 

The second one if this point z is equal to z naught is a simple pole then how to get this 

residue. I mean always we can get with the help of the expansion but these are the some other 

ways we can easily get these residues. So, the, if we have a simple a pole then how to get the 

residue? In that case, this is going to be the expansion, the Laurent series expansion which we 

have discussed before that, I case of simple pole we have only just one term in the Laurent 

series expansion that b1 over z minus z naught and we are interested in what is this b1. 

So, with the help of the limit it is easy because if we multiply here by this z minus z naught 

term here does not matter. It will be just increased and then this will cancel out. So, when we 

take the limit this everything will go to 0. So, this limit will give us directly b1, so to get this 

b1 we multiply this by z minus z naught and then take the limit z approaches to z naught.  

So without expansion of this f z to the Laurent series we can get this b1 which is readily 

given here. So, if it is a simple pole we will just multiply by z minus z naught to this f z and 

take the limit and whatever number comes that is actually the residue.  
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Now, if we have the pole of order m, so that means there are these first m terms in the 

Laurent series expansion with b1, b2, b3 and bm in this case what, how to get the residues, so 

how to get this b1. So, again with the, this limiting approach is going to help us. So, if you 

multiply both side with z minus z 0 power m. So, what will happen? We have this power m 

will increase here and then this is going to be m minus 1, m minus 2, the last one will be just 

bm. 

So, this is the expression we will get for this one and now if we differentiate this m minus 1 

times. So, all these terms will disappear only this term will come as a factorial m minus 1 and 

then we have here b1 all other these terms will, will be 0 and from here we will get b1 times 

this factorial 1 and here also we will get because the m plus n. So, more than m minus 1. So, 

here also you will get some powers of z minus z 0. But when we take the limit this portion 

will become 0 and here we will get just b1. 

So, the conclusion here is how to get this b1 now. So we have already multiplied and if we 

differentiate m minus 1 times and then take the limit so we will get exactly b1 and this the b1 

there will be a term here with factorial m minus 1 that will go to the right hand side. So, we 

have to differentiate this m minus 1 times and then take the limit. So, we can get this b1 

directly if it is a pole of order m. Now, the residue at an essential singular point that we have 

to basically use the Laurent series expansion and then get the coefficient of this 1 over z 

minus z naught . 
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So, coming to this important theorem the residue theorem though we have discussed that 

integral that how that integral can be just evaluated 2 Pi i b1. So, just to recall we have 

discussed that this f z is single valued and analytic inside and on a simple closed curve C 

except at this isolated singularity is z equal to z naught. In that case we have seen that this 

integral value is nothing but 2 Pi I b1 this was the situation when we have just 1 this isolated 

singular point inside this closed, simple closed curve C.  

But this can be generalized, so this is exactly the residue theorem but we can generalize this 

that f z is single valued, analytic inside a non-simple close curve C at and isolated 

singularities, except this isolated singularities z 1, z 2, z r. So, instead of one singularity z 



naught we have these r singularities inside C and in that case the result is just the 2 Pi i and 

the sum of residues at these isolated singularities. 

So, we have r singularities that means we have to get these r residues and then we have to 

sum here these residues multiply by 2 Pi i and that will be the integral value over this curve 

and closes all these singularities. So, we have a this formula k from here 1 to basically r 

because we are taking z 1, z 2, z 3, z r and then these residue and the value of this integral can 

be, can easily be evaluated using this residue theorem.  
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So, how these residue theorem is coming we will give just some idea here. So, we have this f 

z function which has these singularities r singularities that means this is the situations that we 

have a curve which encloses all these singularities here and for each singularities enclosing 

we have a curve c 1. So, these are isolated singularities so always we can have a, we can 

enclose this by another circles which does not have further singularities. So, these are the 

circles which encloses all these singularities, and having only one singularities in each circle 

and then by the Cauchy Theorem if you remember that this integral over the C f z is nothing 

but the integral of the sum of all these circles.  

So, C1 over C2 over Cn and then for each we can use that we 2 Pi i and then the residue at 

that z 1 point here residues are z 2 point and so on. Residue at zn point or we are talking here 

n or r so this is going to be r and then here also we can go up to r. So, this is the residue 

theorem which is very helpful now to evaluate such integrals, the only difficulty that we have 

to evaluate these residues at different different points, but the evaluation of residues in each 

situation we have already discussed, so we can go for the evaluation part of the integrals. 



(Refer Slide Time: 13:10) 

 

 

So, for instance we want to evaluate this integral e power z minus 1 divided by this z, z minus 

1 and z minus i. So, clearly what we see and the C here is the absolute value z greater than 2. 

So, the singular points are z equal to 0 here we will get 1 and then we will get i. So, these are 

the three singular points of this function of this integrant. 0, 1 and minus i, so this is 0 here 

and then we have 1 and then we have i there and this is the circle mod z equal to 2. So, in this 

case all these singular points are lying inside the circles.  

So, we have to apply now the residue theorem meaning we have to compute the residue at all 

these three points, because all are lying inside the circle. So, these are the now for the first 

one, z equal to 0 we classify we are trying to classify. So, we first take just the limit what 

happened as z goes to 0. So, this is the integrant exactly the integrant here. So, this has 0 by 0 



form because e power 0, 1 minus 1. This is 0 and then here we have also 0. So, 0 by 0 form 

we can deal with L'Hopital rule. 

So, the numerator when we differentiate we will get e power z and from the denominator 

when we differentiate the product rule has to be applicable now. So, with respect to the first 

this z is differentiated. So, we have the remaining two, then the z minus 1 so we have z and z 

minus i whole square and then the third one is differentiated, so we have the two times and z 

minus i and z into z minus 1 remain as it is.  

So, here by doing so now we can pass the limits and we observe that this is 1 over minus 1 

into minus 1 that is 1. So, the limit here is 1, so the direct limit is coming as limit z 

approaches to 0, this is the value is 1 here that means this is the removable singularity z equal 

to 0 is a removable singularity and now we will discuss the other one. So, for z minus 1 now 

because this can be also observed here because here the L'Hopital rule was applicable and as 

a result finally we got this value as 1 but this is not going to be the case when z approaches to 

1. 

So, this z minus 1. So, what we are considering now, the limit z approaches to 1 and z minus 

1 and the f z which is the integrant there. So, that means the z minus 1 will get cancel from 

this function and we have e power z minus 1 z into z minus i square. So, if we take this limit 

now, so we can substitute directly and we got this value e minus 1 i by 2 as the value of this 

limit. 

So, it is clearly then the z is equal to 1 is a simple pole. So, this another singularity is 

classified as a simple pole and similarly we can talk about the z equal to i. So, in this case z 

minus i the whole square we have to multiply and then check the limit. So, this is going to be 

a pole of order 2. 
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So, all classification is done here the z equal to 0 is a removable singularity the z equal to 1 is 

a simple pole and z is equal to i is a pole of order 2. Now, for each we have to evaluate the 

residue. So, in the first case since it is a removable singularity the residues is going to be 0. 

So, removable singularity there will be no term with having negative powers in the Laurent 

series and therefore, the residue is going to be 0 and the residue at z is equal to 1.  

If we compute, now this was a simple pole, so we have to get basically this limit, this is what 

we have discussed earlier z minus 1 f z and z approaches to 1 we have to evaluate and this we 

have evaluated before also, so it was e minus 1 i by 2, this calculation says. z equal to i we 

know it is a pole of order 2 and then this we have to get this derivative ones for this z minus i 



square f z a term and if we do so this derivative here of the square means this z minus i 

square will be removed from this function now. 

So, e power z minus 1 z z minus 1, we have to care the derivative and then we have to take 

the limit at z approaches to i. So, in this case z is equal to i and here this quotient rule will be 

applicable. So, the square of this and then we have to differentiate this that is e power z with 

z minus 1 and then again e power z minus 1 will remain and here the derivative will be 2 z 

minus 1 with minus there. 

So, this is just the quotient rule, the simplification substituting this limit z is equal to i we are 

getting this number there. So, which can be further simplified here to get a simple minus 3 i e 

power i 2 i and then minus 1. So, this is the residue at z equal to i. So, we have these three 

residue, one was 0, the other one e minus 1 i by 2, the third one this one. 

So, to get the integral value there, so the integral i will be 2 Pi i and the sum of all the 

residues. So, 2 Pi i and then we have 0 the second residue and this residue of this at the point 

where it is a pole of order 2 and now if we just simplify a bit more we will get this value of 

the desired integral. So, this was one of the applications which we have seen these residues 

play important role for the evaluation of these integrals without using the residue this might 

be little bit more complicated. 
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So, another example, which we will see in this lecture now we will evaluate this function this 

integral where we have the z 4 13 z square and 36 and the mod z is Pi. So, again we have to 

look for what are the singular points and then we have to classify the singular points and 



accordingly we have to get the residue and then the residue theorem. So, all these points to be 

used again.  

So, coming to the singularities so this is a quadratic equation in z 2. So, we can just solve it 

and what we observe that z square is equal to minus 4, z square is equal to minus 9 these are 

the two equations coming out for z square. So, that leads to that z is plus minus 2 i and z 

equal to plus minus 3 i are the zeroes of this polynomial which is appearing in the 

denominator. 

So, all this points are going to be the singular points for this integrant. So, we have the 

singularities now 2 i minus 2 i 3 i and minus 3 i these are the four singularities and for each 

we have to evaluate residue. So, clearly what we will also see here that all these singularities, 

again are coming inside this mod z equal to Pi because Pi is more than 3 and now we are 

going here up to 2 or 3.  

So, all these singularities are lying inside this circle of radius this Pi and again with now we 

have the idea we do not have to check each and every case because your function is now are 

like z and then cos hyperbolic Pi z and divided by we have the z minus 2 i e then we have z 

plus 2 i term, we have z minus 3 i term, we have z plus 3 i term. So, these each of them 

whether z equal to 2 i or z equal to minus 2 i or z equal to 3 i or z equal to minus 3 i, all these 

points are simple poles because if we multiply by z minus 2 i for instance to this f z here this 

z minus 2 i and then take the limit and the limit will exist, similarly, for z plus 2 i and so on. 

So, all these are a simple poles  
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And now so the residue if we want to get for instance is z equal to 2 i for this f z, this was f z 

here. So, we have to multiply by the z minus 2 i and then f z. So, if we do so we have this 

result after putting the limit also for this z equal to 2 Pi everywhere and this cos hyperbolic 2 

Pi i. So, cos hyperbolic 2 Pi i by definition we have e power this 2 Pi i e power minus 2 Pi i 

divide by 2 and this is nothing but the cos 2 Pi which is 1.  

So, this is 1 there into 2 i. So, we get, then here also i i get cancel, so finally, we are getting 

this 1 over 10. So, the residue at this z is equal to 2 i is 1 over 10 and what we will, we can 

observe that if we compute the residue at z equal to minus 2 i also it is coming the same 

number as 1 over 10 and again if we compute now z equal to 3 i or z equal to minus 3 i they 

both are also coming to be exactly equal to 1 over 10. So, all these residues at all these simple 

poles the value is 1 over 10. So, we can now evaluate this integral which is 2 Pi i and the sum 

of all these residues which each of them is 1 by 10 so we have 4 by 10 here and then 2 Pi i. 

So, the final value of this integral is 4 Pi i by 5. 
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So, another example now, here we have this f z, z plus 1 over z 4 minus 2 z cube and the 

circle is mod z equal to half. So, now the circle of radius half. So, if we discuss the 

singularity here so we have actually z cube and then z minus 2. So, z is equals to 2 is a 

singularity and z is equal to 0 is also a singularity. So, these are the two singularities and we 

should note that this z is equal to 2 here now is outside this z e is equal to half. So, at least 

one of them is outside the circle. So, this is of no concern to us in the residue theorem now 

we do not have to compute the residue at z is equal to 2, we need to just compute the residue 

at z equal to 0.  

For z is equal to 0 the function f z is z plus 1 and then we have z cube and z minus 2. So, 

clearly it is visible here that we have to check with this z cube f z. So, this is going to be a 

pole of order 3 if this limit exist. And obviously when z 0, so 1, so minus half is coming there 

straight away. 

So, this is a pole of order 3 and then we have to compute the residue for this pole which is of 

order 3. So, the residue of this f z function at z is equal to 0 will be with this formula which 

we have just derived before 1 over this m minus 1. So, here 3 minus 1 and then again this m 

minus 1 at derivative that is the second derivative and then the limit z approaches to 0 we 

have to consider of this function z cube f z. 

So, here we have 1 by 2 and then this limit. So, the second derivative for this z plus 1 over z 

minus 2 that is the portion when we multiply this to z cube. So, the z cube gets cancel and we 

have to take the double derivative simply for the functions. So, the first derivative is given 

here, then once again we have to first simplify this and then take the derivative again and 

finally take the limit. So, it is coming as minus 3 by 8 the residue at z equal to 0.  

So, the value of this integral is going to 2 Pi i the value of the residue which is minus 3 by 8. 

So, the integral value is minus 3 Pi i by 4. So, what we have observed that one of the singular 

points of this f z was outside the region of this integration or the, this curve. So, we do not 

have to now compute naturally the residue at this point.  
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So, another example where we have the integrant with some of the two functions z e power Pi 

z and then z 4 minus 16, then we have here z and e power Pi z, then d z there and c is a circle 

with ellipse, which is x square plus this y square by 9 equal to 1 in the standard form. So, this 

is the ellipse there and if we look at the first portion here because of z square minus 16 we 

have z square is equal to plus minus 4 and therefore z is plus minus 2 i and we have plus 

minus 2. So, these are the four points were this function break down.  

These are the singular points and we can easily see now. So, this is z equal to 2, here we have 

z equal to minus 2. Then we have z equal to 2 i and then we have z equal to minus 2 i. All 

these points and there is another point here z equal to 0 that is also singular point of this f z of 

this integrant because we have e power Pi over z and as z goes to 0 we have here infinity and 

everything goes to infinity now.  

So, that is also the function is not defined. So that is also a singular point, so we have several 

singular points here 0 plus minus 2 i and plus minus 2 all are here. These two they lie outside 

because z is equal to 2 and here this distance is coming as 1 only. So, this is outside the 

domain. So therefore, these two will not be considered. We have the three points where the 

residue has to be evaluated. 

So, first for the first function the z e power Pi z over z square minus the 16. So, if we 

compute the residue there at z equal to this 2 i and z equal to 2 i. So, z plus 2 i z square minus 

4. So, except this z minus 2 i term the rest is considered here and then we will get this limit z 

equal to 2 i we got minus 1 over 16. Similarly, for minus 2 i also we can evaluate this and the 

same number minus 1 over 16 will come, so these are the two points, there we have 

evaluated.  
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z equal to 0 also we have to see what is, which is appearing in the second term and this is an 

essential singularity as we have seen it is appearing in e power Pi z. So, we have z and then 

we have the expansion for e power Pi z. So, finally this is the expansion for this given 

function and as far as this 1 over is concerned this is the coefficient here for 1 over z and 

therefore the residue of this function z e power Pi z is Pi square by 2 because this is going to 

be the b1 term the first term where the negative power starts.  

So, this is the first term 1 over z and this is 1 over factorial 2 Pi square that is the residue we 

have and the integral then this integral which is to be evaluated now. So, we have 2 Pi i the 

sum of the two residues and then the third one here were the functions is having essential 

singularity Pi square by 2. So, this adds to this Pi Pi square minus 1 by 4 and i. So, that was 

the example were we have also considered one of the singular point as essential singularity. 
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And now these are the references we have used for preparing this lecture.  
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Just to conclude, so we have discussed the residue theorem which is simple that 2 Pi i and the 

sum of the residues. We have to consider and these points are the singular points z k point 

which lies inside this boundary C. Residue at a simple pole can be easily computed by just 

taking this limit z minus z naught and f z. If it is a pole of order m then we have to take this m 

minus 1th derivative of this function z minus z naught power m f z and then take the limit 

also we have to do divide this 1 over factorial m minus 1.  



If it is essential singular points we have to use the Laurent series expansion and then we can 

find the coefficient of this first term where the negative powers starts. So, that is all for this 

lecture and I thank you very much for your attention.  


