Engineering Mathematics - 11
Professor Jitendra Kumar
Department of Mathematics
Indian Institute of Technology, Kharagpur
Lecture 18
Laurent’s Series

So welcome back to lectures on Engineering Mathematics 2. So, this is lecture number 18
and we will be talking about Laurent Series, which is a generalized version of the Taylor

series which we have discussed in the previous lecture.
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CONCEPTS COVERED

» Laurent Series

» Practical Methods for obtaining Laurent Series

So, today we will cover what is the Laurent Series and then the practical methods for

obtaining Laurent series quite similar to what we have done for the Taylor series.
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So, the Taylor Series just to recall suppose that f is analytic in this region z minus z 0 less
than R naught so in this disc with radius R naught and this center z naught then f z has the
power series representation this is what we have discussed. So, if f is analytic in this in this
disc here with center z 0 and radius R naught in that case fz can be represented by such a
series expansion fz naught the first derivatives z minus z naught and the nth derivative and so

on.

And we have also discussed that the Taylor series converges to fz for z that lies in this disk.
So, a z minus z 0 less than R naught, if this f z is analytic in this disk, then the series will

converge to fz for any z that lies in this disk.
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The Taylor series converges to f(z) for z that lies in the disk |z — z,| < R,

The series converges to f(z) within the circle about z, whose radius is the distance from

7, to the nearest point z, at which f fails to be analytic

So, and we have also discussed that the Taylor series fz that the series which we calling
Taylor series converges to fz and within the circle about z 0 and the maximum radius of this
circle we can go up to the nearest point. So here its visualize there up to the nearest point

where f fails to be analytic.

So, if this fz is analytic in this disk here, we can go on increasing the radius until we meet the
point where fz is naught analytic or fz fails to be analytics. So, that is what we have discussed
in the previous lecture. So, the most important here to note that, that this fz is analytic in the
whole disc of radius R naught and then we can represent this fz by such a series
representation which is called Taylor series representation and the maximum radius where
this series will converge to fz can be obtained by extending this radius until we meet the point

where fz fails to be analytic.



So, this was the summary of the last previous lecture and now, we will go for the further
extension or the generalization because very often we will see that some functions they are
not analytic at some point or in some region. So, what kind of representation we can have for

those functions.
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However, another series representation, called Laurent series, can be found in
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which both positive and negative powers of (z ~ z;) exists.

So, as written here, so in many applications we encounter functions that are not analytic at
some points if they are analytic we have seen we can represent by this Taylor series
representation, but if they are not analytic if the function is not analytic at some points or in
some region of the complex plane and then this Taylor series cannot be written in the
neighborhood of such points when we have the function which is not analytic at a certain

point or a region.

In that case the another series which is called Laurent series that can be found and this
Laurent series contains the positive power of z minus z0 and also the negative power of z
minus z0. And this is what we will discuss today and we will also discuss that how to obtain

such a series.

So, this Laurent series, they are valid for the functions that are analytic in the circular
annulus. So, it is as discussed earlier, the Taylor series can be employed when you have the
function which is analytic over the whole disk. But now, we are talking about that this more
generalized power series which is called Laurent series can be written for the function which

are analytic here on this annulus which contains these two circles that there is a cut here with



this R one circle which is not a part of this domain now, and then we have the upper circle

which is bounded whose radius is R 2.

So, in this annulus if our function is analytic we can have a power series representation but
we too, but this power series representation will contain positive power as well as negative
power. Whereas, in Taylor series we have seen that only the positive powers of z minus z 0

appears, but we will observe in Laurent series both positive and negative powers will appear.
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function f(z). The negative powers of the Laurent's series are referred to as the

Principal Part of /(z)

So, what is the Laurent series? So, suppose this function is analytic in this annulus which is
bounded by these two circles here R 1 in whose radius R 1 and R 2. So, this can be
represented then this function can be represented by this power series representation Cn z
minus z 0 power n and then n is now from minus infinity to plus infinity. In the Taylor series

it was from 0 to infinity.

So, now we have added from minus infinity to this minus 1 these terms and similar to the
Taylor series this Cn, this coefficient can be written can be represented by this integral which
comes to be the derivative of f basically. So, and the C here in this integral C is any simple
close curve in this region of analytical and closing the inner boundary. So, we have this
region where the function is analytics, so we can take any circle which is given here, so you
can take any circle which enclosed the inner boundary and of course lies in this domain

where the function is analytic.

So, we can do this integration on any curve, and then this fz can be written as with the help of

this power series representation. So, again this proof of this series representation is quite



involved and we are not talking about how to get exactly this power series representation. But
now the coefficient term here of z minus z 0, which is C minus 1 in our notation, the
coefficient of 1 over z minus z 0 is called the residue and that there will be one more lecture
we will be talking about many applications or of the residue and what is the residue theorem

which relates to the integral evaluation.

And the negative powers of this Laurent series are referred to as principal part of fz so this
two more terminology here the residue is the coefficient of this 1 over z minus z 0 in this
Laurent series expansion and all the terms which of the Laurent series which are having
negative powers, we call the principal part of fz and we will be talking about that what we

can do about this principle part or what is the importance of the residue in following lectures.
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So, we have the Laurent series expansion where Cn can be evaluated by this integral and now
few remarks related to these Laurent series expansion the first one suppose this fz is analytic
everywhere inside this circle of radius this R 1. So, what we have observed while writing this
Laurent series that our function is not analytic in this region or at some points in this region

of this inner circle.

So, now we assume that our function is analytic everywhere. So, there is no such cut out of
this region. So, the function is analytic. So, what will happen to this Laurent series In that
case, we know from the previous lecture that when the function is analytic everywhere in this

region, then we can write down the Taylor series expansion.

But the same expansion we should be able to deduce from the Laurent series because this is a
bit more generalized version of the Taylor series. So, here we now we will see that indeed we
can get the Taylor series also from this Laurent series. So, if the fz is analytic everywhere
inside this circle also whose radius is R 1 and the center is z 1. So, then by the Cauchy
theorem, what we know that the all the Cn these coefficients of z minus z 0 power n all the

Cn for whenever n is less than or equal to minus 1.

So, what will happen? Why the Cn is 0. So, just consider this was our Cn. So, we have 1 over
2 pi and then the integral is over fz and then this z minus z 0 and power is n plus 1. So, if we
consider this integral here, and this power the n is less than minus 1, then this power will be a
negative number or 0. So either there will be a 0 power that means the integral will reduce.
So in case n is minus 1, the integral will be fz dz and when the power is less than minus 1 that

is minus 2 or minus 3.

So we will have something z minus z 0 power some positive power m and fz dz then we will
have the situation in either case since this fz is analytic and C is a close curve, this is going to
be 0. And again here the same argument fz is analytic and here z minus z 0 power positive.

So, again this integrant is analytic and Cauchy theorem says that this value will be also 0.

So, all the Cn for n less than or equal to minus 1 will be 0. So, this summation will reduce to
n equal to O to infinity and then we have Cn and z minus z 0 power n, so this is simply the

Taylor series which we have already discussed.



So, that is the first remark that if fz is analytic everywhere inside the inner circle as well. And
then by the Cauchy theorem we have seen that all these Cn that means the all the negative

powers of this z minus z 0 all these terms will disappear and we will get the Taylor series.

So, in this case the Laurent series reduces to the Taylor series and therefore, we are calling
that this is a more generalized version of the Taylor series. Well, the second one suppose f
fails to be analytic only at z naught point, but is analytic in the in this disk of the outer radius

this R 2 outer circle whose radius is R 2.

So, suppose the function is only failing to be analytic at a point z naught so, at the center here
that z naught the function is not analytic otherwise it is analytic everywhere inside this outer
radius this whose outer circle whose radius is R naught so, except this 1 point z naught the
function is analytics.

So, again we cannot write of course, the Taylor series because the there is a point where
function is not analytic, but what we now can reduce the inner the radius of the inner circle to
tending to 0, because now the only point where the function is not analytic is z naught only.

So, this R1 can be reduced to our wish now, we can go actually to 0.

So, what is the validity reason now, for this expansion is this puncture disk what we call only
the O is excluded. So, 0 greater than the z minus z0 is greater than 0 and then less than R 2.
So, this is the so called the puncture disk only this Z 2 is avoided. Otherwise at any point we

can represent the function f z by that expansion the Laurent Series expansion well.
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So, now we will come to the expansion that how to how to expand a function, which is not
analytic at some point in the domain using this Laurent series. So, here also we will adopt the
practical approach of writing this series because getting to this integral for computing
coefficient Cn that could be very complicated. So, there are the ways which many functions
can be treated using the expansion of this very fundamental function 1 over 1 minus z which

we have already observed in the Taylor series.

So, firstly we will see that to expand in non negative powers of z and in the negative powers
of z, so these two extreme expansions we will see for this function and then various
combinations we can observe for any for many other functions with the help of this example.
So, here are the non negative power of z naught and the negative power of z naught. So, in

one we will get just the Taylor series expansion which we have seen before and in the other



all the negative powers will come, so only the principal part there will be no positive power

of z.

So, how to get these expansions the first one we have already observed before that this 1 over
1 minus z can be represented by this summation which goes from 0 to infinity and z power n

and remember that the validity region for this was this, this disc of radius 1 and center 0.

Now, the second case with which you will observe and indeed we can just reformulate out of
the previous one. So here if we take this minus z common then we have 1 minus 1 over z as
similar expansion which we have written earlier for 1 over 1 minus z. So, instead of z we
have this 1 over z term now, so we can do expand again using the earlier expansion, but the
validate region will change because it was mod z less than 1 and now it will be in this new
case 1 over in the modulus less than 1 that means, 1 over this modular z less than 1 which

says that mod z greater than 1.

So, now this expansion the new expansion will be valid in this outer part of the disk, where
mod z is greater than 1 whereas, the earlier expansion this from 0 to infinity z power n is
valid when mod z is less than 1. So, if we expand now this we have 1 over z sitting outside
before and then we have the summation from 0 to infinity 1 over z power n and the validity
will be mod z greater than 1 which we can evaluate from this absolute value 1 over z less
than 1.

So, we have two expansions for this 1 over 1 minus z, 1 which we have seen earlier, which is
the so called the Taylor series expansion valid in this mod z less than 1 and we have another
one which has only the negative power, negative powers of this z and this expansion is valid
for mod z greater than 1. So, with these two extreme extension and one more example, we

will see now we will be able to write down for many other functions we will see.

So, the another one we will observe here for 1 over 1 plus z but which is very similar to what
we have done just now. And this we will just write for mod z greater than 1 because for mod
z less than 1 again, we know from the previous lecture that was the Taylor series expansion.
So, here 1 over 1 plus z we can again use the same trick, we take z common and then we have

this 1 plus 1 over z.

So, again we can expand now, this 1 over 1 plus z using the Taylor series expansion, but the
validity region will be computed from the absolute value of olne over z less than 1 and which

will come out to be mod z greater than 1. So, here we can write down this expansion from the



previous lecture. So this minus 1 power n will be extra term and 1 over z power n, n goes

from 0 to infinity.
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Well, so we have here this expansion and this is valid for mod z greater than 1. So what we
have observe now we have basically the four expansions was one is for 1 have over 1 minus z
valid for this mod z less than 1, we have the another expansion for 1 over 1 minus z which is
given here by this series, but validities mod z greater than 1, the another one we have 1 over 1

plus z valid in this mod z greater than 1.

And we have also the Taylor series expansion 1 over 1 plus z which is simply n 0 to infinity
and minus 1 power n and z power n which is valid here for mod z less than 1. So, these four
these four expansions will be used now, for representing many functions in terms of the

Laurent series expansion.
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Coming back to this example, now we want to find all Taylor's and Laurent series expansion
for this function, the function is given by minus 2 z plus 3 divided by z square minus 3 z plus
2 and the center here we want to take z equal to 0 that means, we want to have the power of
the z positive and negative in case of the Laurent series and only positive power of z for the
Taylor series, so all possible basically expansions we are going to look now for this function

and we will provide according accordingly there validity region.

So, this is the trick which was used already in the previous lecture the partial fraction
decomposition we have to decompose the given function in these simple functions whose
expansion is known to us. So 1 over z minus 1 and minus 1 over z minus 2. So, this we know
already the possible expansion for 1 over 1 minus z or z minus 1 but we want to see now

what are the possible expansion for 1 over z minus 2.



So, the one way would be that we take minus 2 common that means this minus minus plus we
have 2 1 minus z by 2, and that can be expanded in this z power n over 2 power n and the
validity region will be z by 2 absolute value less than 1. So, here we have this expansion the
validity mod z less than 2 which is coming by this relation, the modulus z by 2 less than 1

which says mod z less than 2.

So, this series here is valid for mod z less than 2. The another possibility we instead of taking
this 2 common we can take the z common so, we have z there, and then we have again 1
minus, instead of z now we have 2 over z and we can again do the write this expansion, so we
have minus 1 over z and then the expansion of 1 over 1 minus 2 over z which is 2 over z

power n and the validity will be coming from this 2 over z less than 1.

So, the validity here for this expansion is going to be mod z greater than 2. So, we have seen
these two expansions, one is valid here for mod z less than 2 another one is valid for mod z

greater than 2 we have all possible expansions for 1 of these terms in the partial fractions.
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Well, so we have this function after this partial fractions and the possible expansions. So, for
1 over z minus 2 we have just seen before. So, we have these 2 possible expansions and for 1
over 1 minus z we have already seen in the first examples, so one is valid in mod z less than 1
another one is valid for a mod z greater than 1. So, all these possible expansions we have

written here.
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And now we can expand this given function using these expansions of the simple functions.
So, the case 1, we will take when the mod z is less than when mod z is less than 1 in this
region we will see that what will happen to the expansion. So, when mod z that is less than 1
the first function 1 over 1 minus z, so 1 over 1 minus z for mod z less than 1, we have this
expansion, which is written already there. So, n 0 to infinity is z power n for the second one,

for minus 1 over z minus 2 in this region mod z less than 1.

So, we have this valid series which is valid in this mod z less than 2 naturally that is also
valid for mod z less than 1. So, we can use this expansion for the second term the z power n
to power n plus 1. So this is valid for mod z less than 1 this is valid indeed for mod z less than
2, but as a whole this will be valid definitely for mod z less than 1 because both are valid in

mod z less than 1. So, that is the trick we have used.
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So, now we have one expansion, which is valid for mod z less than 1, this we can we can
combine just to have this form. The second region we will consider. So, first we know that
some mod z less than 1, the function the given function, which is given here 1 over 1 minus z

and minus z minus 2. So, this is analytic in this domain with center 0 and this radius 1.

So, the function is analytic here the first point where the analyticity breakdown z equal to 1.
So, in mod z less than 1 the function is analytic and hence we have the Taylor series
expansion. This is the Taylor series expansion, Taylor series. So, we have the Taylor series

expansion because the function was analytic in that disc.
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The second region now, this is the annulus we have taken mod z greater than 1 and less than

2 in this case, we will now from the first function 1 over 1 minus z 1 over 1 minus z we are
now talking about mod z greater than 1. So, this is the valid expansion which we will take
now with minus sign 1 over z n plus 1 and the second one we are going up to this mod z less
than 2.

So, again this first one here valid mod z less than 2, we will use that expansion here and then
we have this as a valid expansion in this region because the both the series are valid in the
given domain.
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So, we have another expansion here which is valid in this annulus. And now what is
interesting that we have positive and negative powers, we have both now in our expansion
and this is the typical scenario where we actually have the Laurent series containing positive

and negative powers of z.

The third case when mod z is greater than 2. So, basically here we have 3 region one was
with radius one mod z 1, one was the mod z 2 we have seen that what kind of expansion we
have inside this inner circle, we have seen that what kind of expansion we are going to have
in this in this region. And now we will see that what kind of expansion we will expect. Now

the outside of this disk here that is mod z greater than 2 mod z greater than 2 in this case.

So, having this situation mod z greater than 2, we have the expansions which is valid, this one
in mod z greater than 2 and this is valid in mod z greater than 1. So, naturally it is also valid
for mod z greater than 2. So, then we can use these two expansions here, the one here and the
other one here. And then we have this series expansion and then we can club it. So here now

in this expansion, we are going to have only the negative powers.

So in the outer region of this disc mounted greater than 2. That is the region where we are
getting only the negative powers in the annulus, we were getting positive and negative power.
And inside that disk where the function was analytic, we were getting only the positive

powers of z, well so this weekend club and then we have this in compact form.
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Now we want to write for instance, the Laurent series for this function in this annulus. And
the idea is, it is not new now, we can easily frame this from the previous example itself. So
we need to get this partial fractions first. And then we know that what is the expansion of this

1 over 1 minus z and what is the expansion of the other one 1 over z minus 2.

So, we can write down the one which is valid for more z greater than 1 and the other one is
valid in mod z less than 2. So, this is valid for mod z greater than 1 and then this is mod z less

than 2. So, as a whole we have this validity mod z between 1 and 2.
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So, exactly the previous example, which we have, have seen, and then we have this

expansion containing positive and the negative power because of the annulus. So, if we are



talking about the inside they were the function is analytic we will get only positive power in
the annulus where we have some points in the inner integral where the inner circle where the
function is not analytic, we will get positive and negative powers and the complete outer
region where again your function is analytic, you will get only the negative powers. So, we

have just to combine this we have in the compact form this expansion.
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For instance, if we consider this expansion for this function again this region mod z less than
1 in the annulus and greater than 2. So, it is exactly similar to the previous examples we have
done. So, for less than 1 we have to break it and then with these expansions these two

expansions which we have already seen, we can write down the series expansion.

So, both we have to observe that this is valid now in mod z less than 1 and this is also valid in

mod z less than 2 and therefore, as a whole we are in this range.
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Here again, we can use the same trick. So, third with a mod z is greater than 2 and this can be

also done similarly.
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So, this is a little different example where the Laurent series of this function we will see
about z equal to 1. So, instead of z equal to 0 in the previous examples, we have now z equal
to 1 that means, we are going to have z minus 1 power. So, we have to frame now, this
function so, that we have 1 plus z minus 1 or 1 minus z minus 1 kind of form and then we can

again expand it.



So, like here we have done so, this z minus 1 which was already there 1 minus z so, we have
with minus sign the z minus 1 because we are going to write everything in terms of z minus 1

and the z power 3 we have written 1 plus z minus 1 power 3 again.
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where « is a negative integer and |z| < 1

So, everything is written now in terms of z minus 1 and we know already this expansion. This
is like binomial expansion, so 1 plus z power alpha is 1 plus alpha z and then we have alpha,

alpha minus 1 factorial 2 z square and so on.

So, this expansion we can use here and then we will get all these powers of z minus 1. Well,
so, we have expanded this in using this where the validity region was mod z less than 1. So,
here also our validity region is mod z minus 1 less than 1 because we are expanding 1 plus z
minus 1. So, mod z minus 1 less than 1 will be the validity region where we are expanding

the series here, well.
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where a is a negative integer and |z| < 1

So, having this expansion and then we can just club it. So, we have these 1, 1 is the negative
power and then all other we are getting the positive powers of z because this was also the
situation where we have this deleted O point and otherwise we have we would have the
annulus here, but only the 1 point the z equal to 1 is not in the domain otherwise, this valid in

the whole domain except that z equal to 1 point.
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Well, so these are the references which we have used for preparing this lecture.
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PRACTICAL METHODS FOR OBTAINING LAURENT SERIES

And just to conclude that this Laurent series will have now the positive and the negative
power and this is usually valid in this annulus here and what we have seen that if your
function is analytic over the whole disk then you will get the Taylor series, when you have
the situation that the function is analytic only in the annulus then you will get positive

negative powers.

And when we observe that what will be the expansion outside some disk, then we will get
only the negative power. So, in all these examples we have observed that. So we have seen
this practical method for obtaining Laurent series, which is very very important. And

basically this function works very well.

So, if we have this expansion, the knowledge of this expansion which is valid for mod z less
than 1 and the other 1, is mod z valid for mod z greater than 1 then many other functions can
be written in this in terms of the simple functions and then we can have, again these
expansions in their respective domains, so | thank you for your attention. That is all for this

lecture.



