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Welcome back. So, we will be talking about numerical solutions of differential equation

in the subsequent lectures. So, first we will start with the Initial Value Problem.

Now, initial value problem as we stated in the very beginning, it has got advantage that if

you have an n-th order initial value problem which you can reduce to n first order initial

value problem because all the conditions are prescribed at a single point. So, if I know

how to solve a first order problem that is good enough for me to handle any n-th order

differential equation that is a advantage of the initial value problem on the contrary for

boundary  value  problem  the  conditions  are  scattered  at  two  different  points  at  the

boundary. So, that advantage is not there.
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 Now, a initial value problem in a simple form can be expressed in this manner dy dx

equal to f x, y with condition is given at a single point say y 0 and what we need to find

out y at difference x 0 at different x 0. Now, we say that f x, y is defined in a domain D in

a domain D over which we are finding the solution now. 



Now, this  equation will  have a unique solution if  it  satisfies Lipschitz  condition.  So,

Lipschitz condition basically Lipschitz condition which is a somewhat stronger than the

continuity of the function f x, y. Basically it says that it is a derivative is bounded.

So, Lipschitz condition has to be for Lipschitz condition for y. So, if we say that there are

two points say any arbitrary x and two points x, y 1 and x, y 2 which belongs to D and in

such a way that a vertical line if I join between any vertical line joining these two points

joining this x, y 1 plus xy 2 is also belongs to D. 

Then the Lipschitz condition states that f of x, y 1 minus f of x, y 2 is less than some K y

1 minus y 2. So, for any for all x, y and so, any choice of for some K greater than equal

to 0. So, for any choice of x 1, x y 1 and x, y 2 we can find a K such that this happens.

So, this is a this inequality holds for every choice of x, y.

So, so, basically this implies that the function have function has bounded derivative. So,

if a function if a function given by this way satisfy this Lipschitz condition then we can

say that solution exists solution of the IVP exists and exists and is unique. So, this is

basically the situation now in our case we will be considering a numerical solution. So,

what we assume that the problem is wellposed.
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So,  that  means,  a  wellposed  problem.  So,  basically  we  are  talking  about  wellposed

problem share in a well posed problem basically it means the solution exist and it is



continuously depends on then the we can say that solution is unique and the solution

depends continuously on the auxiliary data that is the solution depends continuously on

the auxiliary data. So, whatever the auxiliary data is, it can be a it can be initial condition

or boundary condition.

Now, we will we will be talking about the numerical solution. Now, in the numerical

solution what we do will be doing finite difference solution. So, in the finite difference

method what we will be doing is that we find out the solution at certain discrete points

not in a continuous fashion. So, the solutions are obtained in a discrete number of points

which is are defined predefined within the domain and on that discrete points what we do

we replace this derivative by a finite difference formula.

So, a grid points; so, what we do is discrete variables which are defined. So, first we

construct some grid points which are discrete points on the domain over which the we

are looking for discrete points on the domain on which we are looking for the solution.

So,  the  derivatives  are  approximated  derivatives  are  approximated  by  difference  by

difference at finite number of points. Oops differences at finite number of points of the

unknown function.  So, this points are finite number of points means these points are

points are the grid points are the grid points.

So, basically  what we do we are replacing,  thus it  leads to a an algebraic system of

equation. So, basically what we do in these finite difference method is that we have a

differential  equation  which  is  basic  consists  of  continuous  function  continuous

differentiable functions. So, those continuous differentiable functions we are replacing

by a formula or difference quotient. So, which is based on the finite number of points

differences  and  in  that  process  which  leads  to  a  system  of  algebraic  equations  and

algebraic equations.

Now, if it is a linear equations so, we get a if it is a linear equation we get a matrix form

or we can solve it directly , but if it is not then we have to do some iterative technique.

Now, this process this process of replacing the derivatives by say different quotients is

called discretization discretization of the differential equation.

So, basically what we do is for finding the solution we choose some finite number of

points over which we are going to solve the algebra over which we are going to solve



this equation and then we replace the derivatives by finite difference formula in at those

points. And, then we are leading to a algebraic set of equations which will be solved.
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Now, what are the errors we are supposed to come across by this process? So, one error

is  very apart  from the I  errors whatever we are excluding the other errors like other

calculation mistakes and all. So, those errors are excluded here apart from that. 

So, even if I exclude those error the computational errors and all so, what we can have is

the one is  that  truncation  error. We call  as truncation  error  this  is  the one when the

formula when the derivatives  are  replaced by finite  number of points difference.  So,

there will be a truncation error because we are truncating if a infinite series to a finite

one.

So, that is one and then this will be the round off error. So, this is a very significant error

because every stage we will have to have a infinite decimal places which need to be

rounded off. Another is inherited errors. Now, these inherited errors are this inherited

errors if I have a step by step process. So, say a time dependent process or one step is

depending on the solution of the previous step. 

So, in that process we have to suppose if the previous step there are some error so, that

will be conveyed to the next one. So, this error will be conveyed. So, that means, this is

the error is inherited from the previous step solutions. So, that is one of the error. So,



even if I am not doing any error at this stage, but it is already error is inherited. So, these

errors are all very important.

Now, if we have a situation now what basically we need to know is that under what

condition the solution whatever we obtain by the numerical method converts to the exact

solution? Now, we can say that convergence of the solution of the solution convergence

of the solution of the or convergence of the finite difference method; convergence of the

solution of the finite difference method is also a good one finite difference method is

ensured by the  consistency and stability  there are  two new term I  bought  over  here

stability of the scheme difference method of the method.

Now, consistency is  the  one  when the  truncation  error  which  ever  arises  due to  the

replacement  of  the  derivatives  into  finite  number  of  points  discretization.  So,  this

truncation error tends to zero as the step size goes to zero I will illustrate this now goes

to zero. And, another is the stability that is little complicated and that will be stability

means suppose a slight perturbation is met to a situation if that remain bounded. So, then

we call it stability. So, that we will talk little bit elaborate to some extent in subsequent

subsequently.

Now, suppose I have the because we are talking about the initial value problem. So, I

have the very simple situation dy dx equal to f x y with dy dx equal to f x, y with y 0 say

is y 0 and x is rather y at x 0 let us say the first point does x 0 that is how our notation is

x greater than equal to x 0.

Now, I suppose I know the solution now first of all before knowing the solution what

strategy we are making is we would like to find out the solutions at these discrete points;

that means, in some delta x. So, you have say a situation x 0 from where from this x 0 a

certain process has started or some process is ongoing. So, and then that process is solve

satisfy  this  equation  now we would  like  to  find  out  that  what  will  be  the  y  in  the

subsequent value of x. So, to do that what we will  be doing is we are considering a

discreet number of points which we call the grid points.

So, generally in a generalized manner we can sense we can talk call  this as the grid

points also note points; in this case if it is a one dimension this is a single point. So, , but

later on we will be talking about multi dimensional. So, in that case it will be a grid only.

So, these indicated grids we are going to find out the solution. So, our task is these are



the grid points. So, task is that if y at n that is y at x n is known then find y at n plus 1

that is y at x n plus 1. So, this is our task.
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Now, this n can be greater than equal to 0. So, that means, I can start from x 0 is known I

want to find out the x 1, then x 1 is known, then x 2; so, in general if I know say solution

at x n and how to get the solution at x n plus 1. So, this will be enough for me to obtain

the solution in all the subsequent grid points. So, I have the solution y n is known and

like to find out the solution at y n plus 1.

Now, what we do say what is y n plus 1 is y at x n plus 1 equal to y at x n plus delta x

now if  I  apply taylor  series expansion over  here.  So,  this  is  y  n plus  delta  x  dy dx

evaluated at n at x n rather x n plus delta x square by 2 d 2 y dx 2 this is evaluated at x n

and so on. Now, I can replace this dy dx by. So, this is y n plus 1 equal to y n plus delta x

this is our f x n, y n is given plus all these terms are order delta x square.

So, if I assume that these terms are all neglected that is from this infinite number of

terms are all neglected. So, then is the truncation error is we have truncated the infinite

series to a finite number of terms and what do you find that if delta x tends to 0? So, this

tray T.E whatever these also tends to 0. This implies this is consistent maybe I should

elaborate in little better way. See suppose I stop it here, so, I get y n plus 1 equal to y n

plus delta x f x n, y n.



Now, so, this is our one method. So, we call this is 1. So, now, I put n equal to 0, 1, 2

etcetera. So, from u solution at n equal to 0, I can find out the solution at n equal to y 1.

So, from y 0 I can get y 1, y 1 if once I obtain then y 2 and so on. So, subsequently I can

obtain the solutions for all the values of n. So, this is the method. So, now, this method is

referred as explicit and single step method; single step because the solution depends only

on the previous n 1 as unknown unknowns are expressed explicitly in terms of known

quantities and it involves only the previous step ; that means, single step solution.

Now, the truncation error; so, this method this is a method and. So, it as a truncation

error. So, this method is referred as the Euler explicit method this is the method is the

very basic one is termed as the Euler explicit method. So, the truncation error we define

this  way, when  the  exact  solution  exact  solution  of  the  IVP is  or  I  would  say  the

truncation error I think this is the better way to say this the residue by which the exact

solution of the IVP fails  to satisfy fails.  So, fails  to satisfy the satisfy the difference

equation. So, this is called the truncation error.

So, let capital Y let capital Y n plus 1 capital Y n plus 1 with the exact solution and

capital Y n is the exact solution capital Y and capital Y n they are the exact solution. So, I

substitute there. So, I get Y n plus 1 so, and this is Y n. So, the residue is delta x f x n, Y

n  and  this  is  the  truncation.  So,  if  something  left  over  this  is  the  truncation  error.

Obviously, it does not convey anything. So, what we do I expand by Taylor series this Y

n plus 1.

So if I expand by Taylor series, so, first term is y n plus 1 the second term is this one and

ah. So, what I get is first term is Y n plus 1. So, delta x dy dx at n; then second term sorry

delta x delta x square by 2 d 2 y dx 2 n etcetera minus delta x. These f x n, Y n that is

basically  the.  So,  these get  cancelled.  So,  we have an infinite  series.  So,  this  is  the

truncation error.
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And T. E. goes to 0 as delta x tends to 0, so, this implies that the method is consistent

consistency. So, this is the one Euler method are. Now, to check the stability what does it

mean by stability.
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Now, to check the stability what we do is now we consider a very simple equation. Now,

so, in the Euler method so, what we have is every step y n plus delta x f n. So, this can be

written as in other words I can write it as y n equal to G into some y n, where G we can

call  as the amplification factor. Now, at  say some at a certain stage n equal to some



capital N, I can write this y capital N is nothing, but G N into y is 0 because this is n

greater than equal to 0, n is moving from.

Now, the solution y N will be bounded the solution y N will be bounded if bounded

means as a intense to infinity the it will have a finite value. So, G N less than equal to 1,

so, that is the geometric series. So, this G N remain G to the power N remain a bounded

number. So, G to the power N tends to 0. So, that is possible only when mod G less than

equal to 1. So, what we need is thus for stability of the scheme of the scheme or this

method mod G should be less than equal to 1.

Now, let us see what is the situation over here by considering a simple example. So, let

the ODE this given by say y dash plus y alpha y equal to 0 y dash plus y dash plus alpha

y equal to 0. So, y dash plus alpha y equal to 0. So, f means f x, y is nothing, but minus

alpha y. So, our G is so, y n plus 1 y n plus 1 equal to y n minus alpha delta x y n. So, G

equal to 1 minus alpha delta x y n.

Now, alpha delta x y n I suppose. Now, what we need is for stability so, sorry not G

equal to y n. So, G is alpha 1 minus alpha delta x. So, mod G less than equal to 1 implies

minus 1 less than equal to 1 minus alpha delta x less than equal to 1. Now, alpha is we

have taken alpha greater than 0 alpha greater than 0. So, alpha delta x is greater than 0.

So, this part is satisfied the other part gives you alpha delta x should be less than 2..

So, so, alpha delta x should be less than equal to 2. So, that means, this implies that the

step size should be choose in such a way that it is less than 2 by alpha. So, that means,

stable provided delta x is less than equal to 2 by alpha. So, that is called a conditional

stability. So, this Euler explicit method what we have here is a conditional stability.
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Now, if I would have taken a scheme like this way. So, I considered as scheme a different

scheme which I call as implicit scheme. What we do? We have dy dx equal to f x, y. So,

choose x equal to x n plus 1 at the point x n plus 1 discretized both. So, y n plus 1 minus

y n by delta x equal to I take it as x n plus 1 and y n plus 1. 

So, that means, we are substituting at n plus 1 this is at n plus 1 and these dy dx are

replacing by these first order forward difference. No, this is backward difference because

we are at n plus 1. So, we are at this point n plus 1 and we are using n.

So, this is a. So, I will get it y n plus 1 equal to y n plus delta x f x n plus 1 y n plus 1 or

one can say y n plus delta x f n plus 1. So, which is a implicit and of course, single step

because a single step method because it is only depend on the previous step solution, but

implicit  because  we  are  not  able  to  write  the  unknown directly  in  terms  of  known

quantities.

Now, what about the stability the same example, so; that means, f is f x, y we are taking

as minus alpha y. So, if I substitute so, y n plus 1 equal to if f x y equal to this. So, y n

plus or rather minus alpha delta x y n plus 1 alpha delta x y n plus 1. So, what I get y n

plus 1 equal to y n by 1 plus alpha delta x 1 plus alpha delta x. So, this is the n to y n. So,

this is the amplification factor is governed by this way now. So, I can say G is nothing,

but 1 plus alpha delta x.



Now, for stability what I need is mod G should be less than equal to 1. So, that means,

minus 1 less than 1 plus alpha delta x less than equal to 1.
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Now, since alpha delta x is greater than 0 so, this is happening as alpha is positive. So,

these satisfies for all delta x for any choice of delta x for for any delta x. So, that means,

the implicit method is unconditionally stable.

So,  this  is  the advantage  of  using the implicit  scheme over  the explicit  scheme.  So,

always  we will  have  we will  see  that  implicit  scheme is  advantageous,  but  implicit

scheme one of the difficulty is that the implicit scheme a handling the implicit scheme is

quite difficult. It will be difficult compared to the explicit one ok. So, we will continue in

the next class.

Thank you.


