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Green’s Function for BVP and Dirichlet Problem (Contd.)

Welcome back. So, now, we will talk about the homogeneous equation Green’s function

that we have constructed are the previously. So, which was this is the form; now we will

go by an example a simple example. 

So, basically what we did is we have a just to revise our previous one we have a non

homogeneous boundary value problem and then we have two independent solution for

the homogeneous boundary value problem. So, and based on that, we have constructed

the Green’s function.
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Now, let us take a example simple example say given by this way say y double dash

equal to f x, y 0 is 0 and y 1 equal to 0. So, our domain is 0 less than x less than 1, now

this is the domain. So, this is a very simple one. So, the homogeneous one homogeneous

equation first of all we have to find out the fundamental solutions y double dash equal to

0.



So,  we can have solutions  are  1 and x any combination  of that.  So,  we construct  a

Green’s function. So, G 1 x y say C 1 y u 1 x for 0 less than x less than y and it has to be

in such a way that G 1 it should be G 1 0 y should be equal to 0 so. So, now, I if I choose,

so, for that I choose G 1 x y I choose as x into C 1 y x into C 1 y and the other part G 2 x

y. So, this will be C 2 y u 2 x 0 less than y less than x less than y, y less than x less than

1. So, what I need is G 2 should be G 2 1 y should be equal to 0.

So, we choose u 2. So, we choose the G 2 x y as G 2 x y we choose as C 2 y into 1 minus

x which is valued for 1 0 y less than x less than 1 ok. So, now, we need to find out C 1 C

2.
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So, now w for this case, so, u 1 is our in the situation is x and u 2 is 1 minus x. So, w is x

1 minus x and 1 minus 1. So, this becomes minus 1 ok. So, Wronskian is minus 1 and

what we need to find out.

So, G x y if I apply that formula, so, that becomes x into y minus 1 for 0 less than x less

than y and y into x minus 1 when y less than x less than 1. So, the solution of the non

homogeneous equation L u equal to f is u x equal to integral 0 to 1 G. So, whichever way

either if I go by this manner. So, better I should do this way I write u y G x y f x d x this

is either way I can take because of symmetry. So, this becomes 0 to y G x y f x d x plus y

to 1; so, G x y f x d x.
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So, for example, if I choose let f x equal to x square. So, in that case u y will be 0 to 1 x

cube y minus 1 d x plus sorry 0 2 1 9 0 to y and y 2 1 x square y into x minus 1 d x. So,

this gives you 1 by 12 x to the power 4 y to the power 4 minus y; so, y to the power 4

minus y. So, this is the simple way to find out the solution of this non homogeneous

equation. So, this is one of the example of course, one can solve it straight away.

So, this Green’s function basically what we transform the differential equation now to a

integral equation. So, some cases integral equation is easier to solve.
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Now, the Strum-Liouville problems the Green’s function for Strum-Liouville problem

can also be defined like this way. So, we have this Strum-Liouville problem given by p u

dash dash plus q u equal to lambda u, say 0 less than x less than a I have frequently used

either a 0 less than x less than a or a less than x less than b both are same I can transform

the coordinate instead of x equal to a, I can make it x equal to 0 there is no harm in. So, it

should not be confusing.

Now, if G x y so if this is a homogeneous problem Strum-Liouville problem. So, if G x y

is the Green’s function of the operator L u say G x y is the Green’s function for L then

what we will have is L x G equal to delta x minus y and so, if I now multiply by lambda

u both side lambda u delta x minus y lambda u and integrate and then integrate between

0 to a. So, lambda u l x g equal to d x lambda u l x g x y d x equal to integral 0 to a

lambda u delta x minus y d x and that gives you lambda u y and this side will be L x can

be taken away. So, 0 to. So, lambda is out is a constant.

Say 0 to a u x g x y d x equal to lambda u i. So, in other words the solution is. So, I get a

solution u y equal to 0 to a u x g x y d x. So, this is a (Refer Time: 11:26) type integral

equation, but the problem here problem here is. So, there will be a lambda inside.
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So, provided lambda is not equal to 0. So, a integral equation representation is given by

this way. So, if lambda equal to 0, we can do little modification is an Eigen value of L of

this Strum-Liouville problem.



So, we can modify this way in (Refer Time: 12:12) like is an Eigen value then what we

do is we can modify we just write the modified form this way pu dash dash plus q plus 1

u equal to lambda plus 1 u. So, this I call as mu u. So, in that case mu is nothing, but

lambda plus 1. So, I can do the sum operation and get a integral representation as 0 to a u

x G x y d x in this case the G x y is the Green’s function of L 1.

So,  this  is  an  equivalence  with  the  Strum-Liouville  problem  integral  representation

integral  representation of the Strum-Liouville problem. I am sorry I am now Green’s

function  is  not  a  very  simple  procedure  as  we could  see  that  it  leads  to  a  ordinary

differential equation a differential equation to an integral equation. 

So, now, all the time it may not be a very helpful 1, but in some cases only the boundary

value problems and all the Green’s function is found to be little useful particularly the

heat conduction Laplace a Parisian type of equation of course, Parisian type of equation

with the Laplace operator basically what I mean. So, now we will construct the Green’s

function for the desolate problem or the Laplace type of equation.
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Now, before that; that means, we will be talking about these situations del 2 Laplacian

operator. Now define a harmonic function. Basically the harmonic functions are which

solves this del 2 u equal to 0.



So, we define in this way a real valued function u x y continuously twice differentiable in

a interval a b in D say in a domain d we will also write as C to D is said to be harmonic if

and only if said to a harmonic even only if del 2 u equal to 0 in d. So, harmonic function

has  to  satisfy the Laplace  equation;  now there  are  certain important  property of  this

harmonic function one is the maximum principle this says that the all the maximum or

minimum of u will attend at the boundary of the domain.
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So, let D be a domain bounded by B say it can be rectangle or a circle or spherical or

whatever and we call  D bar equal to D union B. So, theorem is the principle  of the

maximum principle is a non constant function that is harmonic in D and continuous in

the closed region D bar which is nothing, but D plus the boundary attains its maximum

and minimum values only on the only on the boundary B of the domain D. 

So, all these maximum and minimum whatever the extremum values will be attend it by

the harmonic function on the boundary of the domain. So, this is referred as a maximum

principle. Now our intention is to construct the Green’s function for Dirichlet problem.
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Now so; that means, we what we have is del 2 u equal to say f x y in D.

So, it is not a homogeneous boundary condition because we are talking about Dirichlet

problem so; that means, u is prescribed on the boundary. So, maybe it can be also 0 on B.

So, we consider we construct a Green’s function, we define this way G x y xi eta which

satisfies following condition I delta G is delta x minus xi y minus eta in D so; that means,

it is harmonic everywhere etcetera xi eta, I would say I will not say the harmonic in that

sense because harmonic means it has to be 0.

So; that means, it is satisfying the Laplace equation everywhere except at xi zeta and G

equal to 0 and G is 0 on the boundary on the boundary B, then second condition is G is

symmetric that is what we can say that G x y xi eta is G xi eta x y.
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Third it is continuous at x y xi eta G is continuous in x y xi eta, but del G del n has a

discontinuity  has  a  jump discontinuity  at  xi  eta  such that  limit  epsilon tends  to  0 C

epsilon del G del n d s equal to 1 where so; that means, if I enclose this xi eta point by a

circle C epsilon is this circle plus y minus eta whole square equal to epsilon square of

radius epsilon. So, if I and in is the outward normal to C epsilon.

So,. So, this has a jump discontinuity a c surface area. So, you have a circle C epsilon

encircling the point xi eta. So, as I contract the radius of this circle and approaching x y 2

xi  eta  then  you  have  a  jump discontinuity  in  the  gradient  or  the  derivative  normal

derivative given by this way. So, if I can construct a G based on these 3, then the solution

then the solution of the non homogeneous homogeneous problem Dirichlet problem is

given can be given this way u x y equal to double integral G x y xi eta f xi eta d xi d eta

is the area integral plus on the boundary G x y del G del n d s.

So, this is the this is the construction of the solution can be expressed by this manner

now. So, provided all these conditions are satisfied by G. Now to show that so, what we

have is  G satisfying this  it  is  the Laplace equation homogeneous equation except  an

homogeneous boundary condition and symmetric and it has a jump discontinuity at the

point xi eta. Now, to prove that we have to use the Green’s second identity.
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Now, recall  that  the  Gauss  divergence  theorem what  it  says?  The Gauss  divergence

theorem is integral over v any area or any region if I integrate. So, a function say v. So,

that it will be v dot n ds over the surface.

Now, if I replace this v bar equal to some phi grad psi. So, what I get is phi. So, phi del to

psi minus plus of course, phi del 2 psi grad phi dot grad psi d v equal to phi del psi del n

d s s. Now same way if I write now if I construct this way psi grad phi. So, what I get is

same way I just substitute here. So, psi del 2 phi plus grad phi dot grad phi dv equal to

psi del phi del n d s. Now if I this is capital s or whichever way you can write.
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Now, I will subtract this two. So, what I get is, phi del minus to psi minus psi delta phi

equal to dv equal to integral over s phi del phi del n minus phi del phi del n d s. Now let

phi equal to G x y xi eta and xi is u x y and the domain v is our D and S is the. So, D is

the area bounded by S, S is B. So, in that case what I get this is double integral because

we are in the 2 dimension. So, this is phi G del 2 u minus u del 2 G d x d y equal to

integral over B phi. So, d G del u del n minus u del G del n ds the line integral.

Now, you remember that G is 0 over B G equal to 0 and B and also G del 2 u minus u del

x minus xi y minus eta. So, d x d y equal to minus B u del G del n ds. So, we have this u

G del 2 u.
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 Now del 2 u is given to be f x y and this one so; that means, u what we have is u xi eta if

I now integrate this one. So, u xi eta. So, I take out the minus. So, u xi eta my equal to I

transfer to this side. So, double integral d del 2 u means h x y what was the what was our

notation was equation was del 2 equal to f x y.

So, del 2 u equal to f x y f x y into G x y xi eta d x d y plus u is given to be G. So, G x y

del G del n d s. So, this is what the yeah. So, I have notation was all correct. So, this is

the solution of the non homogeneous equation in terms of the Green’s function. So, this

is also a very easy to show that the symmetry condition symmetry can be shown is that.

So, this is a solution now, now symmetry say this second property the symmetry. So, the

symmetry what we do is in that this is called the gauss or Green’s second identity this

one. So, here what we put phi equal to say G x y xi eta and psi equal to G x y xi bar eta

bar.

So, double integral D G x y xi eta and del 2 psi. So, del 2 psi I can write as del x bar xi

bar y minus eta bar d x d y minus G. So, this is G x y xi bar eta bar into del x minus xi y

minus eta d x dy equal to 0 as G equal to 0 on B. So, from here what I can find that this

will be is G xi bar eta bar xi eta equal to this is G xi eta xi bar so; that means, symmetry.

So, now, what we left here is to show that other one that is the jump condition.
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Now, to show the jump condition, so, we consider that C epsilon as x minus xi whole

square plus y minus eta whole square equal to epsilon square. Now del 2 G x y xi eta

equal to delta x minus xi y minus eta. So, if I consider R epsilon is the region enclosed

by C epsilon and then if I integrate over R epsilon del 2 G d x d y is a R epsilon eta d x d

y. 

So, this I can write as transformed to surface one area C epsilon or the curve. So, this is

del G del n d l and this is becoming 1 as epsilon tends to 0. So, the discontinuity of jump

discontinuity of this equation is satisfied. So, I will show 1 example 1 or 2 example.
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So, now, if we have a Laplace operator del 2 is a say Laplace operator. So, if I choose.

So, del 2 G if you to construct this Green’s function. So, delta x minus xi y minus eta,

say if I choose say R equal to a coordinate a polar coordinate if I choose with y minus eta

whole square; so, transferred to polar coordinate with pole at with pole at xi eta. So, what

I can find that if a solution of these. So, let us call this is a equation a the solution of a

can be like this way I can write as if I transfer to polar coordinate.

And if I consider that this is a del G bar a del r because it cannot be may not be Green’s

function;  because  Green’s  function  means  it  has  to  have  a  homogeneous  boundary

condition. So, G bar can be taken to be some A plus B log r. So, now, if I say that Green’s

function G equal to some G bar plus small g.

So, that this G bar may not be may not be 0 on boundary B. So, in that case I can find out

the B by this manner.
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Now, we know we can use this condition that C epsilon del G del n d s is equal to 1 now

if it is a circle. So, d s can be r d theta. So, this is a I can write as limit epsilon tends to 0.

So, B by r r d theta C epsilon is equal to 1 so; that means, 2 pi B equal to 1. So, B equal

to 1 by 2 pi. So, 1 can write and let A equal to 0.

So, G bar can be taken as 1 by 2 pi log r, but which needs to be modified to construct the

Green’s function to construct the Green’s function] so, that such that it vanishes on the

boundary. So, it is not a very furnaces on the boundary. So, it is not a very trivial task as

such and there are quite a bit manipulations need to be done.

So,  even for this  kind of  linear  equation  linear  elliptic  equation  or  Laplace  equation

linear  Parisian type of equation we are finding is  quite  difficult.  So,  that  is  why the

Green’s function is only for typical cases one consider. So, most of these are all were

very  popular  when  before  the  super  computer  computers  and  all  computing  power

technology are not that much developed. So, today I stop here my discussion on the

Green’s function. So, next class we will continue.

Thank you.


