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Welcome. Now we have introduced the Finite Difference Method for linear boundary

value problem. Now in that what we did is we have the coefficients of the derivatives

and the function was considered to be continuous. So, we have taken a uniform grid and

uniform type of discretization for every grid points. 

Now situation can be difficult when these coefficients are not continuous instead it can

be piece wise continuous; that means, it can have kind of jump discontinuity in certain

number of points or we may have to go for different grid size, different step size can be

different it may vary from grid to grid.

So, in those cases it is not advisable to consider that uniform discretization irrespective

of the grid point itself. So, another concept which is particularly in which deals with this

physical  phenomena like based on some principles,  which are based on conservation

principles say fluid flow equation or heat transfer which are based on conservation of

momentum or heat transfer or flux heat flux. 

So,  in  those  cases  what  we need  is  any  control  volume over  which  the  differential

equation is integrated the conservation principle should hold good over there. Now so,

for this we have to do a little bit of different formulation. So, I am not going to do a huge

discussion  on  this,  it  just  a  conceptual  outline  in  respect  to  a  ordinary  differential

equation that will be thing will be first I will introduced. So, control volume formulation.
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So,  let  us  give  the  topic  name  as  control  volume  formulation.  So,.  So,  we  have  a

differential equation or is the boundary value problem linear say p x dy dx plus say qx y

equal to say r x and a less than x less than b. Now here we can have these p q and r can

be piece wise continuous function. Now say boundary conditions are given by say alpha

1 y a plus alpha 2 y dash a equal to say beta 1 and a whatever beta 2 yb plus beta 3 y

dash b equal to gamma 1. So, this kind of boundary conditions are they are. So, basically

what it means is the mixed boundary condition.

Now px q x rx are piece wise continuous that means function implies functions can have

can have jump discontinuity in a b. So, let us consider say the grid point i x i this is say x

i minus 1 this is say x i plus 1. Now we choose a control volume this is the one we are

calling. So, we choose a points x i minus 2 and x i plus 2. So, now, within these interval

x i minus 2 and x i plus 2 we integrate the equation integrate the ODE between x i minus

half to x i plus half to get. 

So, we call this control volume the that is the or rather between x i the control volume

marked as  test  line.  So,  of  course,  it  is  a  interval  because we have a  1 dimensional

situation. So, it is an interval. So, this interval if we have a 3 dimension or 2 dimension

case then it is a control volume situation.
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So, this we are now integrating between x i minus 2 to x i plus 2 of this equation sorry x i

minus half to x i plus of d dx of px dy dx dx plus x i minus half to x i plus of x i minus

half to x i plus half qx y dx equal to x i minus half to x i plus half r x dx.

So, basically what this method allows that the, it can have jump discontinuity at x i so;

that means, the if I approach from this side; that means, in the increasing side towards x i

so, that value and if I approach from the right side so, that may have a difference. So, that

difference is allowed if we have a piece wise discontinuity so; that means, either this is

we call as the say q i minus and this is I call as the qi plus so; that means, minus side we

are approaching and this is the plus side of at x i we are approaching.

So, this can value can differ. So, if I now integrate this is there is no problem I can

simply write dy dx this is at x i minus plus half minus px dy dx at x i and this is x i minus

half  sorry  plus  half  and  this  is  x  i  minus  half  and  here  since  qx  can  have  jump

discontinuity. So, we divide into 2 separate integral x i 2 x i plus half and this is the qx

qy dx q y dx and the same way x i minus half minus x i minus half to x i plus x i to x i

plus half rx dx.
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Now, what we do here this dy dx at x i plus half plus minus half we can approximate by

central difference formula. So, as y i plus 1 y i plus 1 I think this is not a into 2 into delta

x by 2.

So; that means, if I consider these. So, if I consider x i plus half and if I use the central

difference scheme which steps I say delta x by 2. So, this is yi plus half plus half means

yi plus 1 minus y i plus half minus half. So, that is yi minus y i. So, this is 2 delta x and

same way I can write that dy dx at x i minus half also the same yi by yi minus 1 delta x.

So, these are the two discretization of these derivatives here. 

So, this one we write as pi plus half and this 1 is yi plus 1 minus y i by delta x and the

other 1 comes out to be. Sorry, this is minus p i minus half yi minus yi minus 1 by delta x

and this integral what we do is in each subinterval. So, we this is a very finite subinterval

because xi is are very clustered a dense grid or cluster points. So, this is the x i and x i

plus. So, x i plus 1 say. So, this distance is this step size step size is considered to be very

small.

So, these within this say this is x i plus half. So, here what we do is we approximate the

function by the function value at this stage at x i so; that means, what we do here is x i

minus half to x i q x y dx we replace by q since it is got a i. So, this is i minus into y i and

this is delta if I call this is the half step size. So, like here if I allow different steps i. So,

so far what we have taken is this step size is the same as this step size x i minus half. So,



we have taken this is and this distance are same. So, this may not be the equal because as

I said in the very beginning, that we can have a different step size. So, depending on the

grid points so, we can have a variable step size.

So,. So, this step size a x i minus 1 and x i and the x i x i plus 1 may be different. So, that

is why we denote it by d x i minus 1 by 2 and this one we denote it by d x i by 2. So, if

we call this distance x i minus 1 x i minus x i minus 1 as delta x i. So, what we did what

we are denoting is delta x i minus 1 delta x i minus 1 as x i minus xi minus 1. So, if this

is the case. So, this will be x i and this is x i minus 1. So, this allows you to consider a

variable step size. Of course, what I wrote in the very beginning its still remain correct if

I choose the step size as equispaced point.

So, now if I consider this variable step size; so this distance x i x i minus half is nothing,

but delta x i minus 1 by 2. So, this is i minus I am writing this is q i minus I am writing if

we have a jump discontinuity. So,  this  is  q i  minus and if  we do not have if  it  is  a

continuous then this function where is the same as qi minus equal to qi plus.
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The same way; similarly x i to x i plus half q x y dx can be written as q i plus y i delta x i

by 2.

Now, if I substitute this in the expression. So, what we get here is. So, this is I think one

should and just note the equation. So, let us write this way. So, if I substitute this in the



equation say star, substitute in the discritize intergrated equation substitute in star. So, we

get p i plus half y i plus 1. So, this is delta x i this is delta x i minus 1. So, yi yi plus 1

minus y i yi plus 1 minus y i by into delta xi minus p i minus half yi minus yi minus 1 by

delta x i minus 1 plus y i into qi minus delta x i minus 1 plus qi plus delta x i by 2 this the

integral that is right and this is ri minus delta x i minus 1 same way plus ri plus delta x i

by 2.

Now; obviously if it is a continuous. So, q i minus and qi plus are same and if it is a

uniform grid delta x equi-spaced points. So, delta x i minus 1 and delta x i plus are all

same. So, it will be nothing, but y i qi delta x i by 2; now, what I find that this kind of

discretization which allows the. 

So, if what I was telling is qi minus equal to qi plus equal to nothing, but qi if on ri minus

equal to ri ri plus ri plus equal to ri if continuous. So, let us call this star double star. So,

if I vary for i equal to I can choose i equal to 1 wto n minus 1 because if I call i equal to 0

i equal to 0 and n are boundary.

So, within this in between the boundaries we get this set of equations. So, this system of

equation leads to a system of equations double star leads to a tri diagonal system tri

diagonal system of matrix equation system of linear algebraic equation.
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So, basically this leads to a x equal to some d. So, x i call as y 1 y 2 y n minus 1 and a is

n minus 1 cross n minus 1 tri diagonal system coefficient matrix. So, this is the situation

which takes care of D is the vector of knowns vector of knowns. Now this situation takes

care of variable grid size so; that means, you have a situation where the points are not

equi-spaced so; that means, x i xi plus 1.

So, in some cases where say near the boundary say suppose some heat transfer from

wall. So, what happen is that from the heat transfer of a wall.  So, you have a larger

change in heat transfer rate when you consider near the wall. So, as you move away what

do you have the heat transfer rate becomes slow down. So, we can have a larger grid

size. So, in that case we will have a dense grid near the wall one boundary and as we

approach as we move away either of this, you can have the 2 boundaries here. So, near

the boundary I can have a denser grid and as I move away I can have a course grid.

So, this kind of situation can take care and also another important thing what I have I

was told in I told in the very beginning there is the control volume approach that is the

conservation principles hold good so; that means, every neighborhood in x i within this

neighborhood or control volume the conservation principle is satisfied. So, this kind of

discretization is very helpful when you have a jump discontinuity kind of situation arise. 

So,  I  do not want  to go further  details  on these,  this  is  very helpful  particularly for

solving the Navier Stokes equations and where can have a advection dominated flow and

on. Another important aspect I want to just mention over here in respect to develop the

solver for Navier Stokes equation. Now here what we do is we have a grid point say x i

and all this is influenced this x i the solution is influenced by the by this control volume

of x i minus half and x i plus half.

So; that means, at this we can call this cell phase what we do is we have taken a average

between x i and x i plus 1 the; that means, the cell value or the values at these grid points

x i and x i plus 1 or x i and x i minus 1. Now, when you have a fluid flow problem; so,

there what do you have in the Navier Stokes equation if you remember. 

So, we have a first order derivative in the pressure. Now if I want to give a central

difference here at the grid point i. So, what will happen is that. So, at i if I write this ratio

p i plus 1 minus p i minus 1 by 2 delta x so; that means, the point i or the grid point i



which is influenced by the pressure p i. So, this pi is governing the flow at say ui or vi,

but it is not coming into that impact is not directly reflected by this kind of discretization.

So; that means, what we are taking the pressure that is at the point grid point i which is

influencing the flow is the pressure measured at i plus 1 and i minus 1; so, which may

not be a correct way of discretizing the situation.  So, that is why the control volume

approach is become very useful. So, for this kind of situation where at every control

volume  the  conservation  principles  are  satisfied  and  we  can  handle  the  piecewise

discontinued a piecewise continuity situations and other ok. 

With  that  now we go to  the  situation  when we have a  higher  order  boundary  value

problem. So; that means, so, far we have what we had did is 2 point boundary value

problem and boundary value problem means it would be always of the order higher than

two. So, we so, for what we considered is a second order differential equation and that

has been discretized by several methods.
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Now, let us see that if we have a situation which is higher than 2 higher order BVP then

what the difficulty may come across. So, consider this next advanced one so; that means,

2 to 3. So, consider this boundary value problem third order boundary value problem let

us keep linear. So, this is the one and Bx dy dx plus Cx y equal to say Dx and say let us

call this is a less than x something like that 0 or a less than x less than b this is our

boundary and conditions 3 conditions to be given at 2 different points. So, say suppose y



a is given and y dash a is given say y a dash and the third condition this is y b. So, let us

call this is y b dash these 3 conditions are given at 2 different points, with that this is

sufficient to solve the boundary value problem.

Now if I discretized a third order derivative. So, this I can write as I need not have to go

all the way by Taylor series expansion and all, if I know the how to discretize the first

order or second order that will be good enough for me to a discretization. So, I can write

this yi double dash as dash so; that means, y this is the function as second derivative. So,

if I discretize this. So, this is yi double dash minus yi minus 1 double dash by 2 delta x,

we are taking a equispace point so; that means, we call as x i equal to a plus i delta x all

are equispaced say i equal to 1 to N x 0 equal to a and xN equal to b these are the 2 grid

points.

Now, this I can write as yi double yi plus 1 double dash as this will be y i plus 2 minus 2

y i plus 1 plus y i, then this one is yi minus. So, this is plus 2 y i minus 1 minus y i minus

2 by 2 delta  x  square.  So,  this  is  order h square correct  accurate  order  h  square no

problem  in  it  so;  obviously,  if  I  now  substitute  to  this  third  order  bond  derivative

discretization so; obviously, it is tri diagonalilty is lost because at the grid point x i what

we have is i plus 2 i plus 1 i i minus 1.
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So, formula looks like little simplification.



So, 2 yi plus 1 plus oh this get cancelled so, 2 y i minus 1 minus yi minus 2 y 2 delta x

square plus order h square. So, now, if I substitute what I get is a situation yi plus 2

minus 2 yi plus 1. So, 1 by 2 delta x square yi plus 2 plus 2 yi 1 minus yi minus 2 plus ai

by delta x square yi plus 1 minus yi minus 2 yi plus y minus 1 plus Bi y i plus 1 minus y

i minus 1 by 2 delta x plus Ci y i equal to Di. Now I can use this formula from I equal to

0 to n now why I can use this i equal to 0 to n is that, if I if I discretize this y i. So, what I

have is yi dash yi 0 dash is given to be y i dash.

So, this I can write as y plus 1 minus y. So, this implies that this implies because this is

the first boundary condition. So, this implies y i 1 minus i minus 1 equal to 2 delta x into

y a dash. So, y minus 1 can be written as y 1 plus 2 delta x y a dash so; that means, y

minus 1 can be replaced, similarly I can write this y N plus 1 minus y N minus 1 equal to

2 delta x y b dash 2 delta x this is your the other boundary condition y b dash equal to.

So, or rather y N dash. So, so this process this is the y N dash. So, in this process what it

shows that I can consider the boundary value problem now I can. So, unknowns are in

this case y 1 y 2 up to y N because yN is also not given.

And I have to get this so; that means, this is N unknowns because y 0 is given now how

many equations we have? Equations now these equations if I write i equal to 0 I cannot

write, I can write I equal to minus 1 because we have yi minus 2. So, y i minus 2 means

if I put i equal to minus 1. So, what I get is y i equal to 1 if I get so; that means, I can

write this equation for i 1 2 N minus 1 because if I put i equal to 1 I get the least 1 is y

minus 1 and if I put i equal to N minus 1. So, the highest one will be y N minus 1 means

this is n N minus 1. So, N plus 1.

So,. So, let us call this is the equation star. So, equation star for i equal to 1 2 n minus 1

that is how many equations n minus equations involving how many unknowns involving

how many unknowns we have is first if I put i equal to 1. So, y minus 1 y 0 I am not

considering as an unknown. So, y 1 y 2 y N y N plus 1 so; that means, that is N plus 1

plus; so, 1 to N plus 1 plus 2; so, N plus 2 unknown unknowns now N minus 1 equation

N plus 2 unknowns, but we have two more conditions. So, that gives you the 2 more

conditions.
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Now, y minus 1 is  replaced by can  be expressed or  I  would say y minus  1 can be

expressed in terms of y 1 and similarly y n plus 1 can be expressed. So, they are no

longer treated to be in terms of y N minus 1. So, these two are out. So, these two if

strikeout. So, still that is N number of N number of N unknowns N unknowns involved

in N minus 1 equation. So, N unknowns who are the N unknowns y 1 y 2 y 1 y 2 up to y

N. So, N unknowns involved in N minus 1 equation.

So, thus the method fails because, it does not cannot give a unique solution. So, the next

class I will talk about how to. So, this procedure does not work because we are lacking

by 1 equation. So; that means, one of the variable has to be taken free and we get a

infinite number of solution. So, that is not a practically useful way strategy. So, in the

next class we will talk about how to handle this kind of situation where the number of

unknowns, or where the third order and higher order boundary value problem arise ok.


