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So, friends, in my earlier lecture, I have told the some criteria for judging the goodness

of estimators. For example, unbiasness is one criteria, consistency is one criteria, that

means, if an estimator is unbiased it is in general preferable to an estimator which is not

unbiased. Similarly, an estimator which is consistent is preferable to an estimator which

is inconsistent.

So,  after  there  are  many  other  criteria’s which  we  will  be  discussing  in  the  further

discussion, then we dwelt upon on how to find out the new estimators or how to propose

the estimators. We have mainly discussed two methods, one is the method of moments.

The  method  of  moments  concentrated  on  equating  the  sample  moments  with  the

population moments and thereby obtaining the estimates of the parameters. 

The method is quite simple. And in generate quite good estimators, but then there are

certain  criteria  which does not satisfy. For example,  in many cases,  we saw that  the

method of moments  estimator  were not  unbiased,  although in many cases  they were

consistent. Another popular method which was introduced in 1920s by R.A. Fisher is the

well known method of maximum likelihood estimation. Here the idea is that whenever a

sample is observed we look at the probability of that sample being observed, and what is

the parameter value for which this probabilities or likelihood is maximized.

So, we define what is known as a likelihood function. In the previous class, I have given

an example illustrating that and the general form of a likelihood function. Today, we start

with various applications that is in many probability models, what are the method of

maximum likelihood  estimators.  So,  we call  in  general  MLEs that  is  the  Maximum

Likelihood Estimators.



(Refer Slide Time: 02:38)

So,  let  me  discuss  some  applications  which  are  applicable  to  popular  distributional

models; maximum likelihood estimators. So, let me start with some familiar examples.

Let X follow a binomial n p distribution. Now, if we say that n is known, then p is the

parameter let us consider the likelihood function.

So, the likelihood function is written as a function of the parameter which is actually the

density function, and in this particular case it is n c x p to the power x 1 minus p to the

power n minus x. Here x takes values 0, 1 to n, and p is a number between 0 to 1. Our

objective is to maximize this likelihood function with respect to p. A usual practice is to

take the log of likelihood function which we call log likelihood, and we use an another

notation a small l for this. So, a small l p is equal to log of likelihood that is equal to log

of n c x plus x log p plus n minus x log of 1 minus p. 

Now, if you look at this function, we can apply the usual method of the calculus for

finding out the maximum with respect to p. So, we can consider for example, derivative

of this with respect to p. So, this vanishes you get x by p minus n minus x by 1 minus p,

which we can write as x minus n p divided by p into 1 minus p.

Now, if you notice this thing, this is less than 0, if p is greater than x by n and it is greater

than 0, if p is less than x by n. So, we can see from here that l p this will be increasing if

p is less than x by n; and it is decreasing if p is greater than x by n. Therefore, the shape

of the likelihood function is something like this. If you are plotting l p, then it is attaining



the maximum at the point x by n. So, the maximum value of l p is attained at p is equal to

x by n. 
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So, we say that p hat is equal to X by n is the maximum likelihood estimator of p. Now,

you notice this thing X by n is actually a sample proportion. So, we are getting that the

sample proportion is the maximum likelihood estimator of the population proportion p.

So, this is a natural estimator and from the method of maximum likelihood estimator, we

are actually getting that as an estimator. 

Let me take some more examples for the popular distributional models suppose I have a

random sample X 1, X 2, X n from a Poisson distribution with parameter say lambda.

Our interest is to find out the maximum likelihood estimator for the parameter lambda.

As you recall the parameter lambda in the Poisson distribution represents the average

arrival rate or the mean of the process in which that Poisson distribution is generated.

So, if you write down the likelihood function, L lambda and let me use the notation x for

the sampled observations x 1, x 2, x n, this is nothing but the joint probability mass

function of x 1, x 2, x n written at the points x 1, x 2, x n. So, this is nothing but product i

is equal to 1 to n. Now, this is for one particular x i, if we write it is e to the power minus

lambda,  lambda  to  the  power  x  i  divided  by  x  i  factorial.  So,  this  can  be  further

simplified e to the power minus n lambda, lambda to the power sigma x i divided by

product of x i factorial. 



Now, as you notice we have to maximize this function with respect to lambda and this

function here lambda is occurring in the exponent as well as lambda has an exponent.

Therefore,  it  will  be convenient  if  once again in place of the likelihood function we

consider log likelihood function. So, we take log of this we call it log likelihood that is

equal to minus n lambda plus sigma x i log of lambda minus log of product x i factorial. 

Once again if you observe, this is a non-linear function of lambda we can apply the usual

method of  analysis  for  finding out  the maximum with respect  to  lambda.  So,  let  us

consider the simple derivation of this with respect to lambda, so that is equal to minus n

plus sigma x i by lambda that is equal to sigma x i minus n lambda divided by lambda.

Easily you consider it is greater than 0 if lambda is less than x bar where x bar is actually

sigma x i by n. And it is less than 0, if lambda is greater than x bar.

So, naturally if you plot the behavior of the L function, so suppose this is my x axis

represents lambda, on the y axis represent L of lambda. Then for lambda less than x bar

the  value  is  positive  of  the  derivative.  Therefore,  the  L  lambda  function  will  be

increasing. And for lambda greater than x bar this d l by d lambda is negative, therefore,

this l lambda will be a decreasing function. Therefore, the maximum occurs at lambda is

equal to x bar. So, the maximum occurs at lambda is equal to x bar. 

So, we say that lambda hat is equal to X bar is the maximum likelihood estimator of

lambda. Once again you observe here, this is a sample mean. And in this particular case,

it turns out that the sample mean is the maximum likelihood estimator of lambda. In the

method of moments also, we would have got the same estimator because expectation of

X bar would have been equal to because the first moment is lambda, and first sample

moment is X bar. So, this would have also been the method of moment’s estimator for

lambda in the case of Poisson distribution.

However, in the case of maximum likelihood estimator we have a restriction. Restriction

means that whatever be the required parameter space, so maximization is over only that

region; that thing is not necessarily satisfied suppose we are considering the method of

moments.  Because  there  we  simply  quit  the  sample  moments  with  the  population

movements, we do not bother about what is the region of the parameter that means, the

region where the parameter can vary.



Similarly, when we apply the concept of unbiasness or consistency, we do not look at the

parameter is space. In that sense, the maximum likelihood estimation is more powerful

and all  in  compassing  procedure,  because  it  takes  into  account  what  is  the  sampled

observations  as well  as what is  the required parameter  space where you are actually

considering the estimation. In that sense this has more applicability and acceptance for

the user point of view. 

To give an example in this case I have taken lambda to be greater than 0, that means, the

arrival rate is positive which is true in general for a poison process. But suppose your

physical  constraints  restrict  the  parameter  space.  For  example,  it  could  be  a  service

queue,  where  if  the  number  of  required  percent  exceeds  a  certain  number,  then  the

service that means, and no more persons are allowed ok.
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Then you may have a situation of this nature, consider for example, lambda is less than

or equal to lambda naught, where lambda naught is a fixed unknown. Now, in this case,

if you see we have here looked at the maximum value lambda is equal to X bar. Now,

you may have two cases let me make the plot here. So, see this is X bar. Now, there

maybe two cases, it could happen that lambda naught value is here. If lambda naught is

here, then the maximum of the likelihood function in the region 0 to suppose this is

starting point is your 0. So, 0 to lambda naught the maximum value is still occurring at

lambda naught, it is still occurring at x bar.



Whereas, you may have another situation where your lambda naught maybe on this site

your X bar is here. Now, if you look at the likelihood function, we are concerned only for

this portion. And therefore, if you see the maximum value that is occurring here that is at

lambda naught. So, we cannot say here that the maximum likelihood estimator is X bar,

it is actually lambda naught.

So, in this case the maximum likelihood estimator of lambda is let me call it lambda hat

RML restricted ML. So, this is equal to X bar if X bar is less than or equal to lambda

naught, it is equal to lambda naught if X bar is greater than lambda naught. So, you note

here that this estimator is certainly different from the method of moments estimator for

this problem, because the method of moments estimator does not take care of this fact

that lambda is bounded by lambda naught. So, the answer would have been still X bar for

the method of moment estimator. 
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Let me explain the situation with some other examples also. Let us for example, take X

1, X 2, X n following normal mu sigma square distribution. Now, I consider different

cases because when we are dealing with the two parameter problem, then there may be

some information regarding one parameter or there may be information regarding both

the parameters. I will consider all these cases.

Let us take say case one say sigma square is known. So, in that case without loss of

generality we can take sigma square to be one without loss of generality. So, if we write



down the likelihood function, the likelihood function is LL mu, x, because when sigma

square is known only one parameter is occurring here. So, it is the joint density function

of X 1, X 2, X n add the observed values a small x 1 a, small x 2 a, small x n that is equal

to product i is equal to 1 to n 1 by root 2 pi e to the power minus 1 by 2 x i minus mu

square.

Now, we try to write it in a slightly compact fashion. So, you get 2 pi to the power n by 2

e to the power minus 1 by 2 sigma x i minus mu square. So, as before you can see here

mu  is  occurring  in  the  exponent,  therefore  it  is  beneficial  if  we  consider  the  log

likelihood. So, we consider log likelihood function as minus n by 2 log 2 pi minus half

sigma x i minus mu square. In order to maximize this with respect to mu, we consider

simple derivative with respect to mu which gives us sigma x i minus mu is equal to 0,

which are extremely simple solution mu hat is equal to x bar. So, X bar is the maximum

likelihood estimator of mu. 

Now, if you look at here the parameter space for mu is minus infinity to infinity for

sigma square  it  is  0  to  infinity.  So,  when  we took  sigma square  is  equal  to  1,  the

parameter is space is simply 0 to minus infinity to infinity. And if you look at the X bar,

X bar is likely to be any value because in the normal distribution case the variable lies on

the real line, and therefore, the average value will also lie on the real line.

Now, if we had considered the method of moments estimator in this problem, then for

mu the method of moments  estimator  also would have been X bar. However, let  us

consider say a slightly different situation.
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In the same case suppose we know from the physical considerations that mean mu is

either greater than or equal to mu naught less than or equal to mu naught, or it lies in an

interval say mu 1 to mu 2. So, let me take one case say mu is greater than or equal to mu

naught. Now, you look at the behavior of the likelihood function. So, we have observed

here d l by d d mu is equal to sigma x i minus mu.
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Now, this you can write as n times x bar minus mu. Now, once again you notice this, this

is less than 0 if mu is greater than x bar; it is greater than 0 if mu is less than x bar. So,



the nature of the likelihood function would have been of this nature that if this is mu on

the x axis, on the y axis we plot L mu then for mu less than x bar the likelihood function

is the log likelihood function is increasing and it is decreasing thereafter. Therefore a

maximum is occurring at x bar.

Now, if I use the restriction mu is greater than or equal to mu naught, then there are two

cases. Let us make the plot of the likelihood function. On this side we show mu; and on

this side we show L mu. So, we may have a situation that say mu naught is here. Now,

our parameter spaces mu greater than or equal to mu naught. So, if you see it carefully

our region of consideration is on the right side of this x equal to mu naught, this mu is

equal to mu naught, now the maximum value that mu is equal to x bar that is occurring

within this region. So, the maximum likelihood estimator for mu is still remains x bar.

Let us look at the other case suppose mu naught is on the right side here. Now, there is a

problem mu is greater than or equal to mu naught. So, our region of maximization is only

this; now in this region if you see the likelihood function is decreasing the maximum

value is attained at mu naught. Therefore, your formal maximum likelihood estimator has

got modify.

So, we in this case the maximum likelihood estimator of mu can be written as mu hat let

me put RML just to denote a restriction that is equal to X bar, if X bar is greater than or

equal to mu naught; and it is equal to mu naught if x bar is less than mu naught. Or, we

can also expressed in this version that mu hat RML is equal to maximum of X bar and

mu naught.

So,  immediately  you can notice  that  it  has  got  changed from the  original  maximum

likelihood estimator. And therefore, it is certainly different from the method of moments

estimator also. Because, this procedure takes care of the exact parameter space where the

maximization problem is solved which is not true in the method of moments estimator. I

will consider other type of restriction for this problem.
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So, let us takes a mu less than or equal to mu naught. Now, if you take mu less than or

mu naught, we can go back to the same graph and see this. If mu is less than or equal to

mu naught and mu naught is in this position then our region of maximization is here.

Therefore, the maximum value is occurring at mu naught; that means, I will say that mu

hat RML, it is equal to mu naught if X bar is greater than or equal to mu naught and it is

equal to.

Now, in this case, if you see if mu naught is on this side then our region of maximization

is this full thing and here the maximum is occurring at x bar. So, it is equal to X bar if X

bar is less than mu naught. So, this you can also say in other words as mu hat RML is

equal to minimum of X bar and mu naught.

So, notice here if  we have the full  region we get  X bar  as the maximum likelihood

estimator for mu in the case of estimating the mean of a normal distribution when the

variance is known. When there are certain restrictions like a lower bound placed or an

upper bound placed for the parameter  mu, then accordingly the maximum likelihood

estimator gets modified. In this case, it is becoming maximum of X bar and mu naught;

and in this case, it is becoming minimum of X bar and mu naught. 

Let me take another kind of restriction. In many of the practical problems it may happen

that the mean mu lies between two values. For example, you look at the average income

levels, you look at the average rainfall, you look at the average weight, average height,



so  there  are  various  parameters  which  occurring  the  practical  situations  which  are

actually bounded in nature. They are not unbounded that means, we cannot say that they

take values from minus infinity to infinity. So, when that information is available to us in

that case we should utilize that, and our estimator should reflect that.
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That means, let me take the third restriction of this nature that say a is less than or equal

to mu is  less  than or equal  to  b.  Now, this  is  even more  interesting  we look at  the

likelihood function as we have plotted in this particular case. So, if your a and b is for

example, containing x bar that is x bar lies between a to b then the maximum occurs as

usual at x bar.

However, you could have had other kind of situations. So, in this case in this case mu hat

is equal to X bar that means, when X bar is lying between a to b. You consider another

situation for example, a and b are here. If a and b are here, then we have to look at the

maximum  of  the  likelihood  function  within  this  region  alone  and  obviously  the

maximum occurs at a.
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So, in this particular case then the maximum likelihood estimator is becoming a if X bar

is less than a. And a similar situation would occur if we consider say a and b are to the

left of x bar, in this case our maximization problem is restricted to this region. And if you

see, the maximum is occurring at b. So, in this particular case then mu hat will become

equal to b, that means, if X bar is greater than or equal to b. 
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Therefore our solution for the full problem of new lying between a to b is that mu hat

RML it is equal to a if X bar is less than or equal to a. It is equal to X bar if a is less than



X bar less than b. And it is equal to b if X bar is greater than or equal to b. So, if there is

any  prior  information  about  the  parameter,  the  method  of  maximum  likelihood

estimation takes care of that.

So, thank you today.


