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Lecture - 07
Finding Estimators – I

In the previous two lectures, I have discussed certain desirable properties for Estimators;

however still we are not clear, how to derive estimators for various kind of parameters. It

may be one thing to say that we can estimate a population mean by a sample mean, a

population variance by sample variance or a population range by sample range, but many

a times we are having more complicated situations. 

And moreover as we have already seen such as uniform distribution or an exponential

distribution  that  we may have several  estimators,  maybe one  is  based  on the  mean,

another is based on say order statistics, etcetera. So, there must be some procedures or

methodology by which we should be able to derive the estimators.
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So, some of the well known methods which are used are the method of moments, the

method of least squares, the method of minimum chi square, then maximum likelihood

estimation and then there are certain new procedure such as Bayes estimation, minimax

estimation. The last two procedures which I have mentioned, they are based on decision

theoretic concepts and we may not be able to cover much of this in this particular course.



Historically, the  method of  moments  seems to be  the  oldest  one  introduced by Karl

Pearson. 

So,  let  me start  from here,  the method of  moments.  Let  us consider  that  we have a

random  sample,  X  1,  X  2,  X  n  be  a  random  sample  from  a  population  with  say

distribution, which is identified as say P theta, theta belongs to theta. 
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So, here in general I am considering theta to be a vector parameter that means, theta may

have  component  say  theta  1,  theta  2,  theta  k.  As  we have  already  talked  about  for

example,  if  you  consider  a  normal  distribution,  usually  it  is  characterized  by  two

parameters mu and sigma square. So, in that case theta is mu sigma square. 

Similarly, if we consider a Poisson distribution, it is characterized by a single parameter

say lambda. We may have a Weibull distribution, we may have a gamma distribution. So,

these are variously a described by 2, 3 or 5 parameters, etcetera. So, in general if we have

k dimension parameter, we consider k moments.

So, let us consider first k non-central moments that means, we calculate say mu 1 prime,

which is expectation of say X 1 that is now all of these moments, they are going to be

functions of the parameter. So, let us call this function as a g 1 of theta. Similarly, mu 2

prime that is the second moment of the distribution, this will be another function of theta



let us call it g 2 and so on. Let us write say mu k prime is equal to expectation of X 1 to

the power k that is g k of theta. 

Now, we assume that this k equations. So, each of this is a function of theta 1, theta 2,

theta k. So, we assume that this equations 1, they have solutions assume that the system

of equations 1 have solutions. Now, the solutions will be in the form that means, I am

saying theta 1 is h 1 of say mu 1 prime, mu 2 prime, mu k prime and so on. 

Theta k is h k of mu 1 prime, mu 2 prime, mu k prime; let us call it, 2. In method of

moments, what we do in place of this mu 1 prime, mu 2 prime, mu k prime, which are

the  first  k  non-center  moments  of  the  population,  we  substitute  these  by  the

corresponding sample moments. 
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So, let us defines say sample moments as define the first k non-central sample moments

that means, let me define say alpha 1 is equal to 1 by n sigma X i, alpha 2 is say 1 by n

sigma X i square, i is equal to 1 to n. In general, so alpha k is equal to 1 by n sigma X i to

the power k, i is equal to 1 to n. 

In method of moments, we estimate kth population moment by kth sample moment that

is I am writing that mu j hat mu j prime hat is equal to alpha j, for j is equal to 1 to k. So,

these values we substitute here, thus the method of moments estimators of theta 1, theta



2, theta k are defined as; theta 1 hat is equal to h 1 of alpha 1, alpha 2, alpha k and so on.

Theta k hat is equal to h k of alpha 1, alpha 2, alpha k. 
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Now, the question may come that if we are having the solutions to this equations; if the

solutions to this equations are obtainable in the explicit form, then only we can write

down the solution for the method of moments. There may be some cases, where you may

have say two parameters or three parameters, but two or three equations may not lead to

the solutions in that case we may take extra moments here. 

So, let me start with certain examples here, the simplest one for example I may consider

say X 1, X 2, X n follow a Poisson lambda distribution. Now, this is the one parameter

case, so I need to take up only the first moment. Now, we know that the first moment of

the Poisson distribution is lambda and the first sample moment is X bar. So, lambda hat

as equal to X bar. So, this is the method of moment estimator of lambda. 

Let us take, say X 1, X 2, X n following normal mu sigma square distribution, where

both mu and sigma are parameters here, unknown parameters. Let us take here, mu 1

prime in normal distribution the means is mu; mu 2 prime is equal to the second moment

is mu square plus sigma square. 

So, if you solve this we get mu is equal to mu 1 prime and sigma square is equal to mu 2

prime minus mu 1 prime a square. So, this is the system which is equivalent to this



system that theta i is are written in terms of the mu i primes. So, now we substitute alpha

1 for mu 1 prime and alpha 2 for mu 2 prime. So, the method of moments estimators for

mu hat mu let me call it MME, that is denoting the Method of Moments Estimator of mu;

it is simply X bar that is alpha 1. 

And for sigma square, it is equal to alpha 2 minus alpha 1 a square. Let us see what is the

value of this it is 1 by n sigma X i square minus X bar square, which I can write as 1 by n

sigma X i minus X bar whole square. Notice here, in the previous classes when I was

discussing unbiased estimation, I derived the unbiased estimator of sigma square as s

square that was 1 by n minus 1 sigma X minus X bar square. So, there is a clear cut case

of comparison between the method of moment’s estimator and an unbiased estimator, in

this particular problem. 
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Let us take, say X 1, X 2, X k following a binomial distribution with parameters n and p.

Quite  difficult  situations  in binomial  distribution deal  with the situations,  where n is

known. So, if we have n is known, then parameter is p here. And if I considered the first

moment here, first moment of the binomial distribution is n p. So, this is to be estimated

by alpha 1 that means, X bar is an estimate of n p. 

So, if you want write down the solution p is equal to mu 1 prime by n. So, we get here p

hat is equal to X bar by n, so this is method of moments estimator of p. Since here, only

one parameter was there be considered only one equation. 



Now, let us take the more general case, where n and p both are unknown. When both are

unknown, then we will have to take up the first two moments. So, mu 1 prime is equal to

n p, and mu 2 prime is equal to n square p square plus n p into 1 minus p. In the binomial

distribution, the second moment is equal to this value here. 

Now, we can solve this equation actually if we take up say mu 2 prime minus mu 1 prime

square, I get n p into 1 minus p. So, if I divide this equation by this, I get 1 minus p is

equal to mu 2 prime minus mu 1 prime square by mu 1 prime. So, the solution for p as

come and if I substitute that value of p here, I get the value of n. So, I get p is equal to 1

minus mu 2 prime minus mu 1 prime square divided by mu 1 prime and n is equal to mu

1 prime by p. So, now by substituting alpha 1 and alpha 2 for mu 1 prime and mu 2

prime, I get the method of moment’s estimator for n and p.
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So, let us look at this value here. We get p hat MME as 1 minus alpha 2 minus alpha 1

square by alpha 1. Here, alpha 1 is X bar and alpha 1 square is 1 by n sigma X i a square.

So, if you substitute those values, this turns out to be X bar minus 1 by n, in this case it is

1 by k sigma X i minus X bar square, i is equal to 1 to k divided by X square. 

And n is estimated by X bar square divided by X bar minus 1 by k sigma X i minus X

bar square i is equal to 1 to k. Notice here, when n was known then the estimate for p

was simply X bar by n, whereas now you can see it has change quite drastically here. 



In the context of these excises, let us also see some other properties which we had earlier

for example, unbiasness. Now, you see in the Poisson distribution case expectation of X

bar is equal to lambda. So, the method of moment’s estimator is actually unbiased. It will

also be consistent if we apply the weak log large numbers as we have already seen that if

the  first  moment  exist,  the  sample  mean  is  always  a  consistent  estimator  for  the

population mean.

So, in this case MME is unbiased and consistent for lambda. Let us take up the second

one; normal distribution is  example,  here if  we are looking at  X bar, when X bar is

unbiased for mu and also it is consistent. However, if you look at the estimator for sigma

i square, you can notice here that it is not unbiased; however, it will remain consistent,

because it is actually n minus 1 by n X square. So, since s square was consistent and n

minus 1 by n converges to 1, this also converges this to 1. 

Therefore, here you are having that mu hat MME is unbiased and consistent, however

sigma hat square is biased, but consistent. So, this brings us to important property that

the method of moments  estimators  need not  always be unbiased.  Now, in these two

excises they are consistent.

So, again the question arises whether they will be consistent always, let us take up the

next case. Here, X bar by n this is unbiased as well as consistent so, p hat is unbiased and

consistent. Let us take a second case when both the parameters, where unknown. Here if

you see, since X bar was unbiased for p; so this cannot be unbiased, because this is quite

different. 

If you take up the limits here, so we are having X bar converges to n p in probability. We

are having 1 by n sigma X i square that is alpha 2, this converges to the second moment

that is n square p square plus n p into 1 minus p. So, both of these are convergent in

probability. Now, let us look at this quantity in the denominator you are having X bar

minus 1 by k this quantity. So, if you look at the limit here, this going to n p and this

going to the variance term that is n p into 1 minus p here. 

So,  this  does  not  converge  actually,  because  for  convergence  in  probability  we  are

established one property that is  the invariance property, but the invariance properties

only  for  the  continues  functions.  Here  this  not  a  continues  functions,  because  the

denominator may become 0 however, n hat does not converge to n in probability. We



may take one illustration here, you may take say k equal to 2; let me take observation say

X 1 is equal 2, X 2 is equal say 6. So, X bar is equal to 4 and if I calculate one by k

sigma X i minus X bar square that is also equal to 4.

So, this denominator actually becomes 0 and the probability of this is positive because I

am taking it to be actual observations here. Therefore, we conclude here that the method

of moments estimator need not be consistent also so, this is the method. Sometimes the

properties of unbiasedness and consistency hold, sometimes they do not hold. 
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So,  let  me  give  it  comments  here.  The  method  of  moments  estimators  need  not  be

unbiased. If the functions say g i’s are continues and one-to-one; in that case inverse

functions will exist and they will be continues h is are continues, then MME’s will be

consistent that means, you are not always consistent, but under certain conditions they

will be consistent. 

Let us take up another case let  us take say X 1, X 2, X n a random sample form a

uniform distribution say I am the interval a to b. Again you may different conditions for

example, it maybe one parameter situation; that means, a may be known, or b may be

known, or both maybe unknown. So, I will consider the case when both a and b are

unknown,  so that  means,  we have  two parameters.  So,  we write  down the first  two

moments the mean is a plus b by 2 and the second moment is a square plus b square plus

a b by 3. 



So, we need to solve this. If you solve this we get a is equal to mu 1 prime minus square

root 3 mu 2 prime minus mu 1 prime square. And b as mu 1 prime plus square root 3

times mu 2 prime minus mu 1 prime square. So, these are the basically equations in two

unknowns and they are non-linear equations. However, one can solve it by making use of

certain elementary relation such as a minus b is equal to a square root of a plus b whole

square minus 4 a b. 

So, I am assuming since the interval is from a to b, so I am taking a to be less than b. So,

I am taking minus value here and plus value here. So, if we substitute the alpha 1 and

alpha 2 here, then the method of moments estimator turn out to be X bar minus a square

root 3 by n sigma X i minus X bar square. And b hat MME as X bar plus a square root 3

by n sigma X i minus X bar square. 

In this particular case, we may see that these estimators may be consistent. Now, the

reason for that is that alpha 1 is consistent for mu 1 prime; and alpha 2 is consistent for

this. And this is continuous function here and that is the inverse functions that we have

considered they are continuous. Therefore this will be consistent. However, they are not

unbiased. 
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I  mentioned  that  if  I  am  having  a  k-dimensional  parameter  then  we  may  usually

considered k equations. So, why usually, because sometimes the k equations may not

give  us  the  desirable  result.  Let  us  take  a  very  simple  example  sometimes  for  a  k-



dimensional parameter we may have to consider more than k equations. So, let us take an

example for this situation say X 1, X 2, X n follow a uniform distribution on the interval

say minus theta to theta, where theta is a positive number.

Now, in this case let us see the first moment mu 1 prime is actually 0. So, this does not

give any information about theta and therefore, how to estimate. So, a natural thing is to

consider  the  second  moment  here.  The  second  moment  here  turns  out  to  be  if  we

substitute in the previous formula of this, you will get theta square by 3, because a is

minus theta and b is plus theta. So, if I the substitute here, I will get theta square plus

theta square minus theta square by 3, so that is theta square by 3. So, a solution to this is

equal to square root of 3 mu 2 prime. 

So, I may take the method of moments estimator as a square root 3 alpha 2 that is square

root 3 by n sigma X i square. So, here since the first moment did not give us any solution

for theta, I am using second moment. I end up the section with two more examples; one

for a two parameter gamma distribution, and one for a two parameter beta distribution. 
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Let us take say X 1, X 2, X n following a gamma distribution with parameter say p and

lambda.  So,  here  lambda  is  corresponding  to  the  rate  of  the  corresponding  Poisson

process, that means, I am taking the density function is equal to lambda to the power p

by gamma p e to the power minus lambda x x to the power p minus 1, x is greater than 0.



Now, in this distribution the first moment is p by lambda and the second moment is equal

to p into p plus 1 by lambda square. So, quite easily we can solve this. The solution is in

the form p is equal to mu 1 prime square by mu 2 prime minus mu 1 prime square and

lambda is equal to mu 1 prime by mu 2 prime minus mu 1 prime square. So, the method

of moments estimators are easily obtained as X bar square divided by 1 by n sigma X i

minus X bar square and lambda hat MME is equal to X bar divided by 1 by n sigma X i

minus X bar square. One can easily check that these are consistent, but not unbiased. 

So, generally the method of moment estimators will be consistent, but usually they will

not be unbiased. In fact, the typical situations where they will be unbiased is only when

you are having the first moment only. So, in that case, the sample mean is unbiased for

the population mean and therefore, unbiasedness will be satisfied. 
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Similarly, let us take up say beta distribution say with parameters alpha and beta, that

means, I am considering the density function as equal to 1 by beta alpha beta x to the

power alpha minus 1 1 minus x to the power beta minus 1, where x is between 0 and 1.

And alpha and beta both are unknown positive parameters. The first two moments of a

beta distribution are alpha by alpha plus beta and alpha into alpha plus 1 divided by

alpha plus beta into alpha plus beta plus 1. So, we can solve these equations by firstly,

dividing and then subtracting by 1 etcetera.



So, the form of a solution is that alpha is equal to mu 1 prime into mu 1 prime minus mu

2 prime divided by mu 2 prime minus mu 1 prime square and beta is equal to 1 minus mu

1 prime mu 1 prime minus mu 2 prime divided by mu 2 prime minus mu 1 prime square.

So, if you substitute mu 1 prime as alpha 1 and mu 2 prime as alpha 2, we get the method

of moments estimator as X bar into well this is X bar minus 1 by n sigma X i square

divided by 1 by n sigma X i minus X bar square. And similarly beta hat MME is equal to

1 minus X bar into the same term here that is X bar minus 1 by n sigma X i square

divided by 1 by n sigma X i minus X bar square. 

In this case also, if we look at this thing these estimators are consistent, but not unbiased.

So, this alpha hat and beta hat MME’s they are consistent, but biased. Consistency is

obvious because these things have turned out to be a to be continuous functions in fact,

the denominator is always positive because mu 2 prime minus mu 1 prime square is

actually the population variance. 

And if  you look at  this  function,  so from here  because  of  the basic  weak log large

numbers X bar are alpha 1 converges to mu 1 prime in probability and alpha 2 prime

converges to mu 2 prime in probability. So,  if  you substitute  these things here these

things also remain consistent; however, they are not unbiased. In fact, later on when we

discuss  the  theory  of  finding  out  unbiased  estimators  we  will  see  what  will  be  the

actually corresponding unbiased estimators. So, today’s class I end up at this point.


