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Next we introduce the concept of efficiency. As we have seen that there can be situations

where  we  have  more  than  one  consistent  estimator,  we  may  have  more  than  one

estimator which is a unbiased as well as consistent. So, in that case, we introduce the

concept of efficiency of estimators. The for judging the efficiencies of the estimators we

consider something called as expected error. We have seen unbiasness; so, in unbiasness

we had expectation of T is equal to the given parametric function say g theta. 

So, if it is not unbiased expectation of T minus g theta is a bias or you can say expected

error. But in the there is a danger in using one bias as a simple in a criteria for a goodness

of an estimator, because sometimes the negative bias and the negative errors and the

positive errors may cancel out each other. So, on the average the estimator may become

unbiased, but actually it is not a good estimator. 

We have seen the examples for example, in the estimation of e to the power minus 3

lambda we had an estimator minus 2 to the power x in Poisson distribution which was

taking values always away from the range. But the errors were positive and negative both



very large errors and they were cancelling out each other. So, simply using expectation of

x minus g theta that is bias as a measure is a dangerous thing. 

So, one may look at other measures for example, why not consider absolute error and

then take expectation. So, one may consider expectation of say T minus g theta absolute

value. So, this is called the mean absolute error or one may consider expectation of T

minus g theta whole square which is called the mean squared error. 

So, I will pay some attention to this in the definitions. In the first case, we are simply

looking at the amount or you can say magnitude of the error that we have committed in

estimating g theta by T and then we take the average of that. In the second one, we are

considering the a squares. So, if you think as a layman, then probably we feel that the

first one is an appropriate measure for the error or you can say average error. However,

in practice the evaluation of expectation of modulus T minus g theta is quite complex. 

The second point is that if you look at mathematically, this function is not easy to handle.

The main problem is that modulus function is not a smooth function, because it is having

a corner that is at T is equal to g theta it is not a smooth. Whereas, if you look at the

mean squared error, it is easy to evaluate and it has a simple interpretation which is quite.

So, what I do, I add and subtract expectation T here. 

So, let us consider this as one term and this has one term. So, this becomes expectation

of T minus expectation of T square plus expectation of T minus g theta expectation of

that square plus twice expectation T minus expectation T into expectation T minus g

theta. So, let us look at these terms. The first term is simply the variance of T. The second

term is fixed terms so, expectation will be the same value because we have already taken

expectation here. This term is nothing but the bias of the estimator T. 

And  if  you  look  at  the  cross  product  term  here,  then  this  term  is  a  constant.  So,

expectation applies to this, and this becomes 0. So, we have that mean squared error let

me call it MSE of T that is equal to variance plus the bias. Now, this is quite significant

interpretation. If I have to estimate a set T 1 and T 2 and we only say that variance of T 1

is less than variance of T 2, then we are controlling only one quantity 

However, it may turn out that there is another estimator say T 3, which is which may be

actually biased, but it is variance is much less, so that the overall mean squared error is a



smaller. So, the average a squared error will be less. So, one can use mean squared error

is as a good criteria for judging the goodness of an estimator. 

So,  we will  say that we can say that estimator  say T 1 is better  which is actually  a

terminology for more efficient than T 2, if mean squared error of T 1 is less than or equal

to mean squared error of T 2 for all theta. So, if the two mean squared errors are equal,

then they will be same. 

Now, in the context of unbiased estimation this concept of mean squared error being

smaller  is  equivalent  to  variance  being  smaller.  For  example,  if  the  estimator  T  is

unbiased then bias will be 0 and this mean squared error will be equal to the variance. 
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If T is unbiased for g theta, then mean squared error of T is called to be variance of T.

Now, we define Uniformly Minimum Variance Unbiased Estimators that is UMVUE. So,

an estimator W is said to be UMVUE of say g theta if W is unbiased and for any other

unbiased estimator say W is star of g theta variance of W will be less than or equal to

variance  of  W star  that  means,  it  will  have  the  minimum  variance  throughout  the

parameter  a  space.  The  first  result  in  this  direction  is  about  the  uniqueness  of  the

UMVUE. 

If so we also use the terminology best unbiased estimator etcetera. So, if W is UMVUE

of  say  g  theta,  then  W is  unique  almost  everywhere.  So,  let  W is  star  be  another



UMVUE. Then by definition expectation of W expectation of W star both are same as g

theta and variance of W and variance of W star are also same let us call it say sigma

square fine. 
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Now, let me define say W 1 as half W plus W star. Then what is the variance of W 1, we

can apply the formula for a linear combination of variables. So, variance of a constant

times that is that constant square times variance of W plus W star which is becoming

variance of W plus variance of W star plus twice covariance between W and W star. 

Now, we are assuming variance of W and variance of W is star to be sigma square, so it

becomes 1 by four 2 sigma square plus twice covariance W, W star. Now, covariance

square is  less  than or equal  to  the product  of the variances  the well  known Cauchy

Schwarz inequality. So, this becomes 1 by 4 2 sigma square plus twice a square root of

variance W into variance of W star, but these are both sigma square. So, this is simply

becoming sigma square, so 2 sigma square plus 2 sigma square, so it becomes sigma

square which is the variance of W or W star. 

So, what we are proving? If W is UMVUE W star is another UMVUE, then I am able to

get another estimator W 1 which is also unbiased because, if I take expectation of W 1

here that is again g theta as both W and W star are unbiased and it is variance is less than

or equal to the variance of W. So, let me call this equation number 1. Inequality in 1 is

not possible because our original claim is that W and W star are UMVUE. So, another



unbiased estimator  cannot  have variance less than them. So, at  the most  it  can have

equal, so that means, we should have equality.

Now, how this inequality came inequality came from this condition of the correlation

between the W and W star being less than 1, so that means, correlation must be one that

is covariance is equal to the square root of the variances, that means, W and W star are

linearly related with probability 1. So, for equality to hold W star must be linearly related

to W with probability 1. 

Now, once again you have unbiasness, so if you are saying unbiasness, then what should

be the condition here. And also if I look at say covariance here between W and W star,

then that is equal to covariance between W and a theta W plus b theta, so that is equal to

a theta into sigma square. So, that means, because this covariance between W W star is

equal to variance W so, a theta is 1 and b theta will be 0, because unbiasness is there

because expectation W star must be a theta, so that is simply becoming g theta plus b

theta so, b theta must be 0. 

So, what we are concluding here that W is equal to W star with probability 1, that means,

W is unique almost everywhere. So, you cannot have two different unbiased MVUE’s in

if they are two different then they are equal almost everywhere. 
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Now, next I give a necessary and sufficient condition for an estimator to be UMVUE. So,

let us consider let U g be the class of all unbiased estimators of g theta. Let U 0 be the

class of all unbiased estimators of 0. So, we have the following necessary and sufficient

condition. So, T belongs to U g with variance of T to be finite. So, this has minimum

variance at theta is equal to theta naught. If and only if covariance of T with say f is 0 for

every f belonging to U 0 for which variance of f is finite. That means, if an estimator is

having covariance 0; that means, it is uncorrelated with every unbiased estimator of 0,

then this will be UMVUE of a function g. 

Let me prove this here. So, let T the unbiased estimator of g and it is variance be finite

and let variance theta naught T be minimum. Now, let us consider f belonging to U 0,

such that covariance between T and f is not 0. So, I am assuming contrary to what we

have to prove. So, we will arrive at a contradiction. 

So, let us consider say T plus lambda f now if I take expectation of T plus lambda f then

it is equal to expectation T that is g theta plus lambda times expectation f that is 0. So, it

is equal to g theta so, this new function which I have created T plus lambda f is also

unbiased. 
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Now, let  us take variance of T plus lambda f, so that  is  equal  to variance of T plus

lambda square times variance of f plus twice lambda covariance between T and f. Now, if

I put a condition here that this is less than variance of theta naught T, then this thing



cancels out and it is reducing to a quadratic being less than 0, that means, this condition

is equivalent to lambda into lambda V theta naught f plus twice covariance theta naught

T f less than 0. So, this condition, obviously, can be satisfied. 

The condition two is satisfied for 0 less than lambda less than minus twice covariance T f

by variance f, of course, all these evaluations are at the point theta naught if covariance

of T and f is negative. And for minus twice covariance theta naught T f by variance theta

naught f less than lambda less than 0 if this is positive. That means whatever be the value

of covariance between T and f whether it is positive or negative, I am able to obtain a

range of lambda values such that the variance of T plus lambda f is less than variance of

T. This is a contradiction to the fact that I assumed that variance of T is minimum at theta

naught. 

So, where is the mistake? The mistake is that I am assuming that covariance between T

and f is not 0. So, this is wrong. So, this contradicts the fact that variance theta naught T

is minimum, hence we must have covariance between T and f equal to 0. 
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Now, let us take the converse of this. Conversely let between T and in two variance of T

prime. So, obviously, this is equivalent to saying that variance of T is less than or equal

to variance of T prime. So, if I am taking covariance of T to be 0 with every unbiased

estimator of 0 and I am taking another unbiased estimator T prime of g theta then I am



getting that the unbiased the variance of T is less than or equal to variance of T prime.

This proves that T has minimum variance at theta. 

Another thing which you can conclude from here I have proved that if T is UMVUE,

then covariance between T and T prime that is equal to variance of T; that means, this is

always positive. So, we are also concluding from here that the covariance or you can say

correlation between the UMVUE and any other unbiased estimator is always positive. 

And other interesting property about the UMVUE is that if T 1 and T 2 are UMVUE’s of

g 1 theta and g 2 theta respectively, then a 1 T 1 plus a 2 T 2 is UMVUE for a 1 g 1 theta

plus a 2 g 2 theta that means some sort of linearity property is also true for the UMVUE.

Although it is true for the unbiased estimation, but it is not clear that it will be true for

UMVUE’s, but that is true here.
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In fact, one can look at a very simple proof of this. If I consider say covariance of a 1 T 1

plus  a  2 T 2 with an unbiased estimator  of  0  then it  is  equal  to  a times covariance

between T 1 and f plus a 2 times covariance between T 2 and f. Now, if T 1 and T 2 are

UMVUE’s,  these are  0 so,  this  is  simply 0.  So,  by the  previous  theorem this  result

follows.

As an application of this theorem let us consider linear model and try to obtain UMVUE.

So, let us consider the Gauss-Markov linear model. So, y is an N by 1 vector with mean



x beta and variance covariance matrix as sigma square y. So, actually it is the part of the

Gauss-Markov linear model where we write it as plus epsilon and epsilon follows normal

0  sigma  square  I.  So,  let  us  consider  say  h  y  be  a  real  valued  function  such  that

expectation of h y is say 0 for all beta. This may be say N by p this may be p by 1

etcetera. 

So, if you write this a statement expectation h y 0 it is equivalent to h y into the density

function of y this is a multivariate normal distribution. So, it is e to the power minus 1 by

2 sigma square y minus x beta prime y minus x beta. And some coefficient will come

which I am writing as a constant. This is equal to 0 for all beta belonging to the R p. This

is a multivariate integral here.

Now, you differentiate  both  the  sides  with respect  to  beta,  then  I  will  get  h  y, then

derivative of this will give this term into the derivative of this with respect to y that gives

me x prime y e to the power minus 1 by 2 sigma square. In fact, here I can simplify

beforehand I can write the term which is not involving y I can separate out and take to

the other side. So, this is reducing to, so if you differentiate this, you will get x prime y

here, and the same term here. 

So, this is equivalent to saying expectation of h y into some coefficient lambda prime x

prime y is equal to 0, for all lambda belonging to R p. So, what is this one this is a linear

function. So, by the previous theorem, what we are saying is that lambda prime x prime y

is UMVUE of expectation of lambda prime x prime y that is lambda prime x prime beta. 

In the Gauss-Markov theory of linear models, we had proved that lambda prime x prime

y is  the  best  linear  unbiased  estimator  of  lambda  prime  x  prime  beta.  Here  we are

proving that it is not only best linear unbiased it is actually best unbiased that is it is the

UMVUE for this. Although I have made a small mistake here, it is lambda prime x prime

x beta. So, for this it is becoming best unbiased estimator. 

In the forthcoming classes we will consider methods for finding out estimators. Just now

in the previous two classes we have considered the properties of the estimator  some

desirable criteria. However, there must be some methods by which we can derive these

estimators. So, we will do some well-known methods.


