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So far in this course on Statistical Inference, the portion for which I have covered the

testing of hypothesis, I have considered two major approaches. One is the theory of most

powerful test, uniformly most powerful test or uniformly most powerful unbiased test

etcetera. The theory which has been developed following Neyman-Pearson work and we

derived the exact test for several situations, especially for the parameters of the normal

distributions. 

The another approach, which I considered was the consideration of likelihood ratio test,

and there also we were able to derive the exact tests for various situations. One important

point which I mentioned in the likelihood ratio test is that sometimes when the exact

distribution of the test statistic in the likelihood ratio test is not possible, the asymptotic

distribution of minus twice log of lambda, where lambda is the likelihood ratio is a chi

square distribution under the null hypothesis, and that is helpful. 

Now, today we will discuss another type of tests. Many times we are saying, we want to

test whether the data comes from a particular distribution that means whether the data is

from binomial distribution, whether the data is from a Poisson distribution, whether the

data is from an exponential distribution etcetera. And then how to test that? So, a class of

tests for this has been developed, they are called goodness of fit test. 
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However, I will restrict attention to only chi square test for this situation, so the model is

like this. Suppose, we are having a random sample from a population say F x ok; now,

this F x may depend upon a parameter, it may not depend upon a parameter. So, may

depend upon a parameter theta. In the nonparametric situations, we may not consider this

theta here. 

Now, we want to test hypothesis say F x is equal to some known distribution F x for all

x, against not equal, so that means for at least some x. Now, there can be two cases. I am

considering case I, F naught is completely specified. Now, we want to test whether the

data x 1, x 2, x n is actually from this distribution F naught ok. 

So, the method of applying this chi square test for goodness of fit is the following, we

classify or you can say we divide the range of the distribution F naught into k mutually

exclusive and exhaustive intervals ok. Let us say these intervals say J 1, J 2, J k that

means, what we are saying is that this J i’s are disjoint. And the union of J i’s is the range

of the variables that is the range of the distribution, suppose it is from 0 to infinity or it is

from minus infinity to infinity or if it is a finite interval from a to b. 



(Refer Slide Time: 04:48)

Now, the theoretical probability of interval J i that is probability of X belonging to J i is

equal to say pi i, i is equal to 1 to k. Let us consider say, so when we are considering the

observations divided into intervals J 1, J 2, J k, then there will be observed frequencies.

So, let O 1, O 2, O k be the observed frequencies of J 1, J 2, J k ok.

Then  the  vector  O  of  this  observed  frequencies  O  1,  O  2,  O  k  has  a  multinomial

distribution. We can write it like this probability of say O 1 is equal to small o 1 and so

on, O k is  equal  to small  o k that  is  equal  to n factorial  divided by product of O i

factorial, i is equal to 1 to k, then product of pi i to the power O i, i is equal to 1 to k,

where sigma of O i is equal to n, and sigma of pi i is equal to 1. 

Now, expectation of say O i that will be equal to n pi i, let us call it say e i. And variance

of O i that will be equal to n pi i into 1 minus pi i. In the multinomial distribution, these

are the statements that are satisfied. Now, let us take say k equal to 2 that means, only

two classifications are there. Then actually it becomes binomial distribution.

And for binomial distribution, we have the statement X 1 minus n pi 1 divided by square

root n pi 1 into 1 minus pi 1. So, this X 1 is O 1, this converges in distribution to normal

0, 1. This is this notation for convergence in distribution. The asymptotic distribution of

O 1 minus n pi 1 divided by square root n pi 1 into 1 minus pi 1 is a standard normal, this

is by the binomial approximation to the normal distribution. 
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Now, this implies that if I consider O 1 minus n pi 1 square divided by n pi 1 into 1

minus pi 1, then the asymptotic distribution of that will be chi square on 1 degree of

freedom. Now, for k equal to 2, we will have O 2 is equal to n minus O 1. So, we can

then show that O 1 minus n pi 1 whole square divided by n pi 1 plus O 2 minus n pi 2

whole square divided by n pi 2, that is equal to O 1 minus n pi 1 square divided by n pi 1

into 1 minus pi 1 that is the distribution of O i minus n pi i square divided by n pi i, i is

equal to 1 to 2 that is asymptotically chi square 1. 

For general k, we can proceed in the same way. We can show that the distribution of O i

minus n pi i square divided by n pi i, i is equal to 1 to k is asymptotically chi square on k

minus 1 degrees of freedom. Now, when so this pi i's are the theoretical probabilities. We

calculate this e i's that is equal to n pi i from the known distribution F naught x that is

under H naught. 
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So, this expression then becomes, then this T is equal to sigma O i minus e i square

divided by e i, i is equal to 1 to k, this is asymptotically chi square on k minus 1 degrees

of freedom. So, we can set up a test for goodness of fit by reject H naught, if T is greater

than chi square k minus 1 alpha, where chi square k minus 1 alpha is the upper 100 alpha

percent point of the chi square k minus 1 distribution. 

Now, here you have some sort of simplification also available. In place of this, see this

we can write sigma O i square plus e i square minus twice e i divided by e i that is equal

to sigma O i square by e i plus sigma e i minus twice n twice O i e i, so that is equal to

minus twice O i sigma. Now, sigma O i is n, sigma e i is n that is the total number total

number of observations, so that is equal to sigma O i square by e i plus n minus twice n

that is equal to sigma O i square by e i minus n. So, this is a simplified formula for T

here. 
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Let me give an example here. A random variable simulator  is used to generate 1000

values for a uniform 0, 1 random variable. The values are classified into intervals like 0

to 0.1,  0.1 to  0.2 and so on,  0.9 to  1 ok.  The observed frequency distribution  is  as

follows. 

So, here I will present interval and here the number of terms. So, these are O i's between

0 to 0.1 between 0.1 to 0.2 between 0.2 to 0.3, so there are 112 values here, between 0.1

to 0.2 it is 101, 94, 0.3 to 0.4 99, 0.4 to 0.5 108, 0.5 to 0.6 93, 0.6 to 0.7 94, 0.7 to 0.8

100, 0.8 to 0.9 104, and 0.9 to 1, there are say 95 values. 
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So, we want to test, whether the simulator is working properly. So, what does it mean

that the simulator is working properly, if it is working properly, then the observations that

we have got, and we have classified like this should fit into a uniform distribution on the

interval 0 to 1 that means, you want to test the hypothesis, whether F x is equal to say U

x, where U x is cdf of uniform 0, 1 distribution. Against the hypothesis not, that F x is

not U x. 

So,  in  order  to apply the chi  square test  for  goodness  of  fit,  I  need to  calculate  the

probabilities of the intervals. Now, if I am assuming under H naught probability of this

each interval of this nature that is 0 to 0.1, this will be 0.1 and so on, probability of each

interval 0.9 to 1 that will also be equal to 0.1 that is these are my pi i’s, so pi i's are 0.1

for i is equal to 1 to 10 that is k is equal to 10, we are having 10 classes here. 

Now, based on this e i, e i is equal to n pi i that is equal to 1000 times 0.1 that is equal to

100; that means for each class in this case e i is only 100. So, if we want to apply this chi

square test, I need to calculate sigma O i minus e i square by e i or I can also calculate

sigma O i square by e i minus n. So, these things are not difficult now. 
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This T statistic then, so the test statistic T that is equal to 112 square by 100 minus 101

square by 100 plus all the terms will be plus 95 square by 100 minus 1000. Now, this can

be easily evaluated, this value turns out to be 3.72 approximately. Now, we need to look

at the value of chi square on 9 degrees of freedom at alpha level of significance. 
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Now, you can see the tables of chi square distribution, so I will show from here. So,

tables of chi square distribution, suppose I look at say 0.05, the value is equal to 16.91.



So, chi square 9 on 0.05 is say 16.91, we may also look at say chi square 9, 0.01 that is

equal to 21.67 and so on. So, these values you can see they are larger.

So, H naught cannot be rejected that means, this simulator seems to be working properly.

Now, in this particular case, when I wanted to test whether F is equal to F naught, then F

naught was completely specified, because I said uniform 0, 1. But, there can be cases,

when the distribution maybe known, but it may not be completely known. For example,

it may depend upon a parameter, suppose I say uniform 0 theta or I say binomial n p,

where p is not known. So, I want to test whether the data is from a binomial distribution,

whether it is from a normal distribution, but the parameters may not be specified. In that

case, we need to actually estimate those parameters from the data. 

(Refer Slide Time: 20:57)

So, I will consider case 2, F naught is not completely specified. For example, it may

consist of say s parameters. If it consists of parameters, then these probabilities need to

be estimated, so what we do? So, in this case, we first find say maximum likelihood

estimators of parameters to get estimates of pi i theta, say pi i hat theta ok. Then e i hat

that is equal to n times pi i hat theta, so I am just writing n pi i hat. 

Now, let me say w that is equal to sigma O i minus e i hat square by e i hat, i is equal to 1

to  k.  This  has  asymptotic  chi  square  distribution  on  k  minus  1  minus  s  degrees  of

freedom. So, in place of k minus 1 now it is becoming k minus 1 minus s, because this is



the number of the degrees of freedom which are now reduced because of allocation or

you can say estimation of the parameters which were unknown. 
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Let  me give one example of the situation here.  So,  we have the data  say on certain

arrivals  ok,  the  number  of  arrivals  at  a  service  counter  assumed  to  have  a  Poisson

distribution ok, the time period is over hours ok. Now, the following data is recorded on

a particular day. 
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So, the no arrivals were observed 22 times on a particular month let me say sorry in

place of day. And 1 arrival observed on 53 times, 2 arrivals were observed 58 times, 3

arrivals  were observed 39 times,  4  arrivals  were observed 20 times,  5  arrivals  were

observed 5 times, and 6 arrivals were observed 2 times, 7 arrivals were observed 1 time.

So, the total data was 200. 

Now, when we apply the chi square test, the expected frequency for each class should be

greater than or equal to 5, if it is below that, then we need to combine. Now, here you can

see the observed frequency for these two classes  is  less than  5.  Naturally, when we

consider the estimation, it may turn out to be less. So, what we do, we merge this. We

merge this into one group say 8, and now we do not know the parameter of the Poisson

distribution.

So, we estimate lambda by the mean, so we consider 0 into 22 plus 1 into 53 and so on

plus 1 into 7 divided by 200 that is approximately 2; so, then expected frequencies are

calculated using the probability distribution. So, we have e to the power minus lambda,

lambda to the power k by k factorial, k equal to 0, 1 to and so on. 

So, what is the probability X equal to 0? That is e to the power minus lambda that is

equal to e to the power minus 2. So, this is O i, this is e i. So, e corresponding to the first

grouping that is equal to 22 into e to the power minus 2. So, this can be calculated. Then

we are having probability X equal to 1 for example that is equal to lambda e to the power

minus lambda that is twice e to the power minus 2. So, e to then will become 53 into 2 e

to the power minus 2 that is 106 e to the power minus 2. 
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Similarly, you can calculate probability X equal to 2 say that is equal to lambda square e

to the power minus 2 by 2 factorial that is equal to again 2 e to the power minus 2, so e 3

that will be equal to 58 into 2 e to the power minus 2. 
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Similarly, you can calculate say probability X is equal to 3 and so on. And I will combine

these three probabilities that is you can consider them as probability X greater than or

equal to 5. And this values will then turn out to be, sorry this is slightly mistaken here,

this will be 200 here, you are multiplied by n, so this is 400 e to the power minus 2, this



is also 400 e to the power minus 2. So, now let me write down the values here. These

values are 27, 54.2, 54.2, 36, 18, and this last three we add up it is 10.6, this total is again

200 here. 

Now, we calculate this sigma O i minus e i square by e i, this can be calculated it turns

out to be 2.33. Now, let us compare from the chi square value on how many groups we

have made, we have made five groups that is 0, 1, 2, 3, 4 and greater than or equal to 5.

So,  there  are  six  groups  here.  So,  we look at  the  chi  square  value  on  5  degrees  of

freedom, and this value then turns out to be 11 point say 0.05, it is 11.143. So, once again

we can say that H naught that is the hypothesis that the data is from Poisson distribution

cannot be rejected.

Now, this chi square test for goodness of fit has some further generalizations or you can

say further applications. Let me give the application of it for testing for independence in

a contingency table. Earlier you remember that when we were discussing the theory of

UMP unbiased tests, I considered a 2 by 2 contingency table, and I actually obtained an

exact UMP unbiased test. 

However, that UMP unbiased test dependent upon was depending upon certain discrete

distribution. And so it was not very convenient to apply, you need to look at the tables

and moreover it is a discrete distribution, therefore the randomization will be required to

get the exact level of significance there.


