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In  practice  there  can  be  even more  complex  situations.  For  example,  I  may have  k

different  populations  and I  may  like  to  check  whether  their  means  or  whether  their

variances are equal. Now in this case suddenly the UMP test or UMP unbiased tests are

very difficult  to  derive.  In  fact,  we cannot  write  down the form of the joint  density

function in a in the form of multi parameter exponential family so that this parameter

which is to be considered occurs there.

And therefore,  the likelihood ratio  test  seems to be a  good option,  only thing is  we

should be able to derive the maximum likelihood estimators under omega as well  as

under  omega h.  So,  I  will  give  a  couple  of  examples  for  applications  when we are

dealing with multiparameter situations and the number of populations may be more than

two also.
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So, the first one I will do likelihood ratio test for equality of means in one way analysis

of variance model. So, the set up is like this we are having X 11 and so on X 1 n 1 this is

a random sample from say normal mu 1 sigma square. X 2 1 and so on X 2 n 2 this is a



random sample from normal mu 2 sigma square and so on. X k 1 and so on, X k n k that

is  a  random  sample  from  normal  mu  k  sigma  square.  Note  here  I  have  taken  the

variances  to  be common.  So,  this  is  actually  the  situation  of  a  one way analysis  of

variance model and we are considering the variances to be the same. Our testing problem

is to test that whether the means are the same or not this is called homogeneity of that is

means of are homogeneous; that means, the populations are homogeneous basically.

 If mu is are the same then basically it means that we have same population against that

mu i's are not all equal. Now let me introduce some notation theta is now mu 1 mu 2 mu

k sigma square. So, this k plus 1 dimensional I will use the notation x for x 1 1 and so on

x 1 n 1 and so on, x k n k all the n 1 plus n 2 plus n k observations that is sigma n i am

calling a n these observations I call as x.
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The parameter is phase, the full parameter is phase if we look at then the mu i’s belong to

R that is k dimension Euclidean space in to positive half of the real line and under omega

H you are dealing with 2-dimensional. Now the likelihood function is L theta x that is

equal to 1 by sigma square 2 pi to the power n by 2 e to the power minus 1 by 2 sigma

square sigma x ij minus mu i square j is equal to 1 to n i is equal to 1 to k. 

So, we take the log likelihood here that is minus n by 2 log 2 pi minus n by 2 log of

sigma square minus 1 by 2 sigma square sigma x ij minus mu i square. Now easily you

can see that if I consider the derivative with respect to mu i then I will get n x i bar minus



mu i divided by sigma square. So, this is greater than 0 for mu i less than x i bar and it is

less than 0 if mu i is greater than x i bar. So, you get mu i omega hat is equal to x i bar

because the maximum will occur at x i bar. Now we can see that the derivative with

respect to sigma square and I get minus n by 2 sigma square plus 1 by 2 sigma to the

power 4 double summation x ij minus mu i square which I can write as minus n by 2

sigma to the power 4 1 by n double summation x ij minus mu i square minus sigma

square.
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So, once again you can see it is greater than 0 if sigma square is less than 1 by n double

summation x ij minus mu i square and it is less than 0 if sigma square is greater than this.

So; obviously, the maximization is occurring at this point and since mu is estimated to be

x i bar. So, we get sigma omega hat square that is equal to 1 by n double summation x ij

minus x i bar square. I give a notation to this, this is equal to S W that is 1 by n within

sample variation because sigma x ij minus x i bar whole square denotes the variation

within the i x sample and then I am taking sum over all such. 

So, this is the total variation within each sample I have considered here. So, if I consider

L hat omega that is by substituting the values of estimated values of sigma square and

mu i I get 1 by 2 pi sigma omega hat square to the power n by 2 e to the power minus n

by 2. Now for omega H you are having mu 1 is equal to mu 2 is equal to mu k is equal to

say mu. 
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So, this actually becomes a problem of single sample, this reduces to a problem of single

sample of n observations. So, mu hat omega H will become simply x bar that is sigma n i

x i bar divided by n and sigma omega H hat square that will become equal to 1 by n

sigma x ij minus x bar square, which I call as 1 by n S T that is the total variation ok.

Because I am considering the difference of each unit from the grand mean and then I am

taking the sum of the squares here this is the total variation. 
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So, this purpose of writing this S W and S T is to explain the type of terms that we are

getting and this S T you can actually write as double summation x ij minus x bar square,

here you add and subtract x i bar. So, this gives me x ij minus x i bar plus x i bar minus x

bar whole square. So, this becomes sigma x ij minus x i bar square plus sigma n i x i bar

minus x bar square.

So, this is equal to S W plus S B, now this S B this term is actually variation between

samples because we are considering x i bar that is i x sample mean and x bar is the grand

mean. So, this is nothing, but the and then I am taking square and then taking all such

cases. So, this is actually how much variation is there between the different samples. 

So, now, we can utilize this and write down the form of L hat omega H. So, that turns out

to be simply 1 by 2 pi to the power n by 2 e to the power minus n by 2. So, let us look at

these two terms here that we are getting now, L hat omega here e to the power minus n

by 2 and here sigma omega hat square to the power n by 2, where sigma omega hat is the

S W by n term. 

And in L hat omega H I get the same thing, here only omega H is replaced and the value

of omega H that we calculated as S T by n and this S T I wrote again as S W plus S B.

Therefore, the form of the likelihood ratio test that is lambda x that is L hat omega H by

L hat  omega that becomes equal  to sigma omega hat square by sigma omega H hat

square to the power n by 2 less than C which is equivalent to now by because of writing

down this equation sigma S W divided by S B plus S W less than C 1. Then you take the

reciprocal and subtract 1, so we get greater than C 2 or we can write S B divided by k

minus 1 divided by S W divided by n minus k greater than say some C 3. 
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Now, under H that is mu 1 is equal to mu 2 is equal to mu k this S B that is S B by k

minus 1 divided by S W by n minus k, this follows f distribution on k minus 1 n minus k

degrees of freedom. So, this point C then is nothing, but a point on the curve of the

density of F k minus 1 n minus k distribution that is the upper handed alpha percent point

this probability is alpha. So, then this is F of k minus 1 n minus k alpha. 

So, this is a usual test which is there in the one way analysis of variance, for testing the

homogeneity of the means. I will repeat this problem, I made the assumption here that

the variances are common. But when we are discussing general sampling from various

populations then many times this assumption needs to be checked; that means, we are not

sure whether variances are of same, if the variances are to be checked then we can derive

a likelihood ratio test for this also. Let me just give a brief sketch of this likelihood ratio

test here. 
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Let me consider testing for homogeneity of variances. So, you have seen actually this

likelihood  ratio  test  is  applicable  to  very  very  general  situations,  I  considered  a  k

population model and I could actually derive an exact test. Now here let us consider the

sampling X i 1 X i 2 X i k X i n i, this is from normal mu i sigma i square for i is equal to

1 to k and the k samples are taken independently. 

So, our hypothesis is sigma 1 square is equal to sigma 2 square is equal to sigma k square

against not all sigma i squares are equal our parameter phase has become little bit larger,

it is actually 2 k dimensional now. The parameter theta is actually mu 1 mu 2 mu k sigma

1 square sigma 2 square sigma k square. 

The full parameter space is that this mu i s are real numbers and sigma i squares are the

positive real numbers and under omega H it becomes k plus 1 dimensional because mu i

is remain as such, but sigma 1 squares become equal. So, the dimension of this part has

reduced to 1.
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So,  this  is  k;  so  k  plus  1  dimensional.  Now  as  before  I  will  not  do  the  detailed

calculations here. The likelihood function that is equal to since I have to write for the k

different populations I am writing it in this form product i is equal to 1 to k 1 by root 2 pi

sigma i to the power n i e to the power minus 1 by 2 sigma i square sigma x ij minus mu i

square j is equal to 1 to n i. 
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We can simplify this that is equal to 1 by product sigma i to the power n i 2 pi to the

power n by 2 where sigma n i is equal to n then e to the power minus half sigma x ij

minus mu i by sigma i square I is equal to 1 to k and j is equal to 1 to n i.

So, we take the log likelihood function that is equal to minus n by 2 log of 2 pi minus

sigma n i by 2 log of sigma i square minus 1 by 2 sigma i square sigma ok. Let me write

it as minus half double summation x ij minus mu i square by sigma i square. So, we can

easily see that if I consider the usual maximization with respect to mu i s it will occur at

x i bars and if I do with respect to sigma i square I will get it at 1 by n i sigma x ij minus

x bar square. 

So, proceeding as in earlier cases the maximum likelihood estimates of the parameters

mu i omega hat is equal to x i bar and sigma i omega hat square that is equal to 1 by n i

sigma x ij minus x i bar square j is equal to 1 to n i i is equal to 1 to k. Under omega H

that is when we are taking sigma 1 square is equal to sigma 2 square is equal to sigma

square then this l gets modified l will become minus n by 2 log of 2 pi minus n by 2 log

of sigma square minus 1 by 2 sigma, square double summation x ij minus mu i square.
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So, now if we consider the maximization,  maximization yields mu i omega H hat as

before that is x i bar, but the value of sigma i omega H hat square that becomes 1 by n

double summation x ij minus x i bar square. So, L hat omega and L hat omega H can be

calculated, I will write down the simplified expressions here that is product I is equal to 1



to k 1 by 2 pi to the power n i by 2 sigma i omega hat square ok, square part you can

remove to the power n i. 

And then we get if I write the square here then n i by 1 I can write e to the power minus n

i by 1 that is equal to e to the power minus n by 2 divided by 2 pi to the power n by 2, 1

by product sigma i omega hat square to the power n i by 2 i is equal to 1 to k. And L hat

omega H that is equal to 1 by 2 pi to the power n by 2 e to the power minus n by 2 and

sigma omega H hat square to the power n by 2. 

(Refer Slide Time: 22:39)

So, lambda x that is equal to sigma i omega hat square product i is equal to 1 to k to the

power n i by 2 divided by sigma omega H hat square to the power n by 2. So, this less

than C, this is equivalent to saying that now this sigma i omega hat that we have already

written the expression that is 1 by n i sigma x ij minus x i bar square to the power n i by

2 product i is equal to 1 to k divided by 1 by n double summation x ij minus x bar x i bar

square. This is j is equal to 1 to n i j is equal to 1 to n i i is equal to 1 to k whole to the

power n by 2 less than C. 

So, basically it is in the terms of the sums of the squares and this is as we have already

defined it is the within sample variance for each sample and this is the total variance

sample thing. So, this is coming in terms of the sum of that earlier we got 2-dimensional

sum that is S B plus S W thing here I am getting k dimensional terms here, the tables

actually the exact distribution of this is not so simple; however, it has been derived. But



if we use the asymptotic distribution that will become chi square on how many degrees

of freedom 2 k minus k plus 1. 

So, if I consider the asymptotic distribution here of minus 2 log of lambda x that is chi

square on k minus 1 degrees of freedom. So, this was provided by Bartlett in 1937 and

the exact tables of this test are provided by R E Glaser in 1976 in Journal of American

Statistical Association. 
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This part he considered for equal sample sizes and for unequal sample sizes Chao and R

E Glaser in 1978 Journal of American Statistical Association, this is for unequal n is, this

test is shown to be unbiased test. So, there are desirable properties of this test that are

known. So, if we use this test to check the equality of the variances and if the equality is

there then we can apply the one way analysis of variance test for mu 1 is equal to mu 2 is

equal to mu k. And so what I have demonstrated here that the likelihood ratio test gives

the solutions here. 

Whereas, we cannot directly apply any result for the UMP or UMP unbiased test theory

here, those things are not applicable here. Let me take up another problem here which is

related. Earlier I have explained one problem testing for independence in a contingency

table.  Now in a  contingency table  you are having two attributes,  but when we have

quantitative data then how to test the independence. So, the simplest model that we can

think of is a bivariate normal population. 



Now we know that  in  a  bivariate  normal  population  you have  five  parameters;  that

means, the two means the two variances and then there is a correlation coefficient rho.

And it has been it is known that the independence is equivalent to rho being equal to 0 in

the bivariate normal population independence condition and the uncoded conditions are

the same.

So, if we test rho is equal to 0 in a bivariate normal setting then it becomes the test for

independence. Let me show that a likelihood ratio test can be derived here.
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So, this will be my last example in the likelihood ratio test and then we will proceed to

another theory here. So, testing for independence in bivariate normal distributions. So,

let X 1 Y 1, X 2 Y 2, X n Y n be a random sample from bivariate normal mu 1, mu 2,

sigma 1 square,  sigma 2 square,  rho population.  And we want to test  the hypothesis

whether  rho is  equal  to 0 against  rho is  not equal  to 0,  this  is  the condition for the

independence  our  parameter  here is  the  5-dimensional  mu 1,  mu 2,  sigma 1 square,

sigma 2 square, rho. The full parameter space here is mu is are real sigma i squares are

positive and rho lies between minus 1 and 1.

Under the null hypothesis the dimension becomes one less, mu i's and sigma i squares

remain the same; however, rho becomes 0. So, the likelihood function here that is equal

to 1 by 2 pi sigma 1 sigma 2 root 1 minus rho square to the power n e to the power minus

1 by 2 1 minus rho square sigma x i minus mu 1 by sigma 1 square plus y I minus mu 2



by sigma 2 square minus 2 rho x i minus mu 1 by sigma 1 y i minus mu 2 by sigma 2.

Now you take the log likelihood here. 
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And that is equal to minus n by 2 log of 2 pi minus n by 2 log of sigma 1 square minus n

by 2 log  of  sigma 2 square minus n by 2 log  of  1  minus rho square  and then this

expression that is minus 1 by twice 1 minus rho square sigma x i minus mu 1 square by

sigma 1 square plus sigma y i minus mu 2 square by sigma 2 square minus twice rho

sigma x i minus mu 1 in to y I minus mu 2 divided by sigma 1 sigma 2.

Now, if  we  proceed  in  the  usual  fashion  for  the  maximization  with  respect  to  the

parameters for mu i's I will get the sample means and for the sigma i squares we will get

the sample variances and for rho I will get the sample correlation coefficient.
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So, without getting in to too much of the derivations let me write the final answers here.

So, the maximum likelihood estimates for parameters are. So, mu 1 omega hat that is

equal to x bar, mu 2 omega hat is equal to y bar sigma 1 omega hat square is equal to 1

by n sigma x i minus x bar whole square, sigma 1 omega hat square is equal to 1 by n

sigma y i minus y i bar square. And rho hat omega that is equal to R that is equal to

sigma x i minus x bar, let me write a small r here y i minus y bar divided by square root

sigma x i minus x bar square and sigma y i minus y bar square. 

Now, when rho is equal to 0 then the m l estimates except rho remain same. So, we get

then L hat omega that is equal to 1 by 1 by 2 pi sigma H hat omega sigma 2 hat omega to

the power into square root 1 minus r square whole to the power n e to the power minus n

and in L hat omega H except this term all other things will be same. So, it will become

equal to 1 by 2 pi sigma 1 omega hat sigma 2 omega hat to the power n e to the power

minus n. 
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So, the test is simply reducing to so the likelihood ratio test is to reject H if lambda x is

less than c which is equivalent to saying one minus r square to the power n by 2 is less

than C, which is also equivalent to saying modulus r is greater than C 1. Now under rho

is equal to 0 that is under H, the distribution of t that is root n minus 2 r by root 1 minus r

square this is t on n minus two degrees of freedom and this term is increasing in r. So, we

can write the test in terms of t n minus 2.

So, basically what we can say we reject when modulus T is greater than t n minus 2

alpha by 2 because t distribution is symmetric. So, we can consider this alpha by 2 and

this probability has alpha by 2 here this is the acceptance region. So, you can see here

also we are able to nicely get the likelihood ratio test for testing for the independence in a

bivariate  normal  population.  I  have  discussed  in  detail  the  large  sample  test  this

likelihood  ratio  test  which  is  having  a  large  sample  optimality  property  that  is  the

asymptotic distribution is chi square. 

And I have derived the exact distributions for testing problems in the normal populations

and also some examples in binominal or exponential distributions also have been worked

out. In the next lecture I will consider another concept that is of invariance in the testing

problems. 


