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In the last  lecture,  I  introduce  the problem of testing or  you can say comparing  the

variances of two normal populations. 

(Refer Slide Time: 00:33)

And we had considered one particular type of hypothesis problem that is sigma 2 square

by sigma 1 square less than or equal to tau naught against sigma 2 square by sigma 1

square greater than tau naught. And the likelihood ratio test for this was derived. 
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Now, we will consider for the same model the hypothesis H 4 that is sigma 2 square by

sigma 1 square is equal to tau naught against say sigma 2 square by sigma 1 square is not

equal to tau naught ok.

(Refer Slide Time: 01:13)

So, we need not write the expressions once again. The likelihood function is given by 1

by 2 pi sigma 1 square to the power m by 2 1 by 2 pi sigma 2 square to the power n by 2

e to the power minus sigma x i minus mu 1 square by 2 sigma 1 square minus sigma y j

minus  mu 2 square by 2 sigma 2 square.  In  the previous  problem,  I  considered the



maximization of this likelihood function over omega and omega H, now in this case

omega H was sigma 2 square less than or equal to tau naught sigma 1 square. 

Now, in this new case, so let me repeat it here the log likelihood function the likelihood

function and the log likelihood function, which we need to write. So, L theta, x, y that is

equal to 1 by 2 pi sigma 1 square to the power m by 2 2 pi sigma 2 square to the power n

by 2, e to the power minus sigma x i minus mu 1 square by 2 sigma 1 square minus

sigma y j minus mu 2 square by 2 sigma 2 square. 

And we are having the omega is equal to mu i belonging to R and sigma i square is

greater than 0 for i is equal to 1, 2; and omega H is now theta mu i belonging to R and

sigma 2 square is equal to tau naught sigma 1 square and of course, both are positive.

Here our theta is mu 1, mu 2, sigma 1 square, and sigma 2 square.

Now, as in the previous problem, the maximization of L over omega gives mu 1 hat

omega is equal to x bar, mu 2 omega hat is equal to y bar, sigma 1 omega hat square that

is equal to 1 by n, sigma x i minus x bar whole square, this is m here, and sigma 2 omega

hat square that is equal to 1 by n sigma y j minus y bar square.

(Refer Slide Time: 04:17)

And as a consequence L hat omega that is given by L hat omega is given by 1 by 2 pi to

the power m plus n by 2 sigma 1 omega hat square to the power m by 2 sigma 2 omega

hat square to the power n by 2 e to the power minus m plus n by 2. 
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Now, consider maximization over omega H. Now, when we consider over omega H, then

the likelihood function gets little bit modified, over omega H L is equal to 1 by 2 pi

sigma 1 square to the power m by 2, 2 pi tau naught sigma 1 square to the power n by 2,

because we are having sigma 2 square is equal to tau naught sigma 1 square, when we

are considering omega H. And then you have e to the power minus sigma by 2 sigma 1

square minus sigma y j minus mu 2 square by 2 tau naught sigma 1 square.

So, of course, if we considered the log likelihood here log of L that is equal to minus m

plus n by 2 log of 2 pi minus n by 2 log of tau naught plus minus m plus n by 2 log of

sigma 1 square minus 1 by 2 sigma 1 square sigma x i minus mu 1 square plus 1 by tau

naught sigma y j minus mu 2 square.

So, if I consider mu 1 hat omega h that will be x bar and mu 2 omega h hat that will be y

bar. However, if I consider maximization with respect to sigma 1 hat square, I will get 1

by m plus n sigma x i minus x bar square plus 1 by tau naught sigma y j minus y bar

square. So, sigma 2 omega H square that will be equal to tau naught sigma 1 omega H

hat square.
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As a consequence if I substitute these values in the log likelihood function, so we get L

hat omega H s, I will get this value as 1 by 2 pi to the power m plus n by 2 tau naught to

the power n by 2 and then 1 by m plus n sigma x i minus x bar square plus 1 by tau

naught sigma y j minus y bar square to the power m plus n by 2 e to the power minus m

plus n by 2. So, this is the term that we will be getting. 

Now, let us look at both of these terms here. We are having L hat omega as this term and

L hat  omega  H s  this  term.  So,  the  likelihood  ratio  test  can  then  be  written  as  the

likelihood  ratio  test  is  then  to  reject  H  4  when  lambda  x  is  less  than  c,  which  is

equivalent to, now we have already derived the expression.

So, I will just substitute here L hat omega H, I will get this in the denominator, and then

divided by L hat omega. So, this will go in the numerator, so that gives me sigma 1 by m

sigma x i minus x bar whole square to the power m by 2 1 by n sigma y j minus y bar

whole square to the power n by 2 divided by 1 by m plus n sigma x i minus x bar square

plus 1 by tau naught sigma y j minus y bar square to the power m plus n by 2 less than c. 

Now, we take reciprocal of this and we use the notation say u is equal to sigma y j minus

y bar square divided by sigma x i minus x bar square. If we assume this, then we can

rewrite this condition as 1 plus u by tau naught to the power m by 2 1 by u plus 1 by tau

naught to the power n by 2 greater than say c 1 ok. Let us assume this to be g u. Now,

this function, I considered in the yesterdays derivation of the test function.
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I will show the behavior of it here, I had assumed this term to be g u. Now, this term is

same as this term here, and g prime u we had calculated.

(Refer Slide Time: 11:24)

So, this g prime u function then turns out to be so I straight forwardly take the same

expression, we obtain g prime u is equal to some term, which is equal to half of 1 plus u

by tau naught to the power m by 2 minus 1 1 by u plus 1 by tau naught to the power n by

2 minus 1 m by tau naught into 1 by u plus 1 by tau naught minus n by u square 1 plus u

by tau naught.
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And this we can see as g prime u, it will be greater than or equal to 0 if and only if u is

greater than or equal to n by m tau naught; and it will be less than 0 if u is less than n by

m tau naught. So, in fact, I can say greater here, greater here. So, g u is increasing if u is

greater than n by m tau naught; it is decreasing if u is less than n by m tau naught. And,

and g u will have minimum at u is equal to n by m tau naught that means, the nature of

this g u function will be something like this. There is a minimum at n by m tau naught. If

I am plotting g u function, then it will have something like this.

So, if I say g u is greater than c 1. So, suppose this point is c 1 then this is equivalent to

saying that u is either less than certain number or it is bigger than a certain number. So,

let me call this number say d 1 and d 2. So, g u greater than c 1 is equivalent to u less

than d 1 or u is greater than d 2. So, this is the rejection region of likelihood ratio test.

Now, this quantity u that is sigma y j minus y bar square divided by sigma x i minus x

bar square. 

So, if we considered this, we are having sigma y j minus y bar square divided by sigma 2

square and n minus 1 divided by sigma x j minus x bar square divided by sigma y square

m minus 1. This follows f distribution on n minus 1 m minus 1 degrees of freedom. So,

when so when sigma 2 square by sigma 1 square is equal to tau naught that is H 4 is true.
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Then u  by tau  naught  that  follows f  distribution  on n  minus  1 m minus  1.  So,  the

rejection region is u by tau naught less than F n minus 1 m minus 1 1 minus alpha by 2 r

u by tau naught greater than F n minus 1 m minus 1 alpha by 2 of course, this is not

necessary I have taken the 2 points symmetric, but F distribution is not symmetric. So,

the points may be at different places. So, this is F m minus n minus 1 m minus 1 1 minus

alpha by 2 point, and this point will be F n minus 1 m minus 1 alpha by 2. So, this is the

likelihood ratio test for the equality of the variances. And you can note here that this test

is the same as the u and p and bias test, which I derived for this situation. 

So, what we have shown here is that the likelihood ratio tests are applicable for the

parameters  of  the  normal  distributions.  Also  they  can  be  applied  to  some  other

distributions,  where  the  distribution  may  not  be  of  the  normal  type,  it  could  be

exponential,  gamma,  double exponential  etcetera.  The form of likelihood ratio test  is

such that it is general. 

So, only condition is that you should be able to derive the maximum likelihood estimator

for the full parameter is space as well as under the parameter space which is restricted

because of the null hypothesis. Once we have that the likelihood ratio test can be written.

Now, it is a different matter that whether we can be able to derive the distribution of that

are not. 



Now, in many cases we may not be able to derive the exact distribution; however, there

is a nice asymptotic property of the likelihood ratio test whichever I would like to state

here.  If  you  remember  for  the  maximum  likelihood  estimators,  we  stated  certain

conditions which we called regularity conditions.  For example,  the density should be

differentiated differentiable, the parameter space should be a subset of the an open set in

the Euclidean space. We had assume that the density function are any expectation of a

measurable integrable function should be differentiable under the integral sign. So, these

were the regulatory conditions.

Under those conditions,  we had shown that the maximum likelihood estimator  exists

with probability one. And it is also consistent. And the asymptotic distribution of the

maximum likelihood estimator was shown to be normal. Now, under the same regularity

conditions,  because  here  we  are  dealing  with  the  likelihood  function,  so  under  the

similarly likely regularity conditions the asymptotic distribution of the likelihood ratio

test is statistic can also be found.

So, I will state the result without the proof here. Under regularity conditions on f x theta,

the asymptotic distribution of minus 2 log of lambda x under H converges to a chi square

distribution. The degrees of freedom of the chi square, they are given by the difference in

the number of independent parameters in omega and those in omega H. That means,

when we are assuming the parameter is space,  so we are getting for example,  in the

previous problem omega had 4 dimension mu 1, mu 2 sigma 1, square sigma 2 square. 

Under omega H we had 3 independent parameters, because mu 1, mu 2 are independent,

but sigma 1 square and sigma 2 square where related. So, there were three independent

parameters, so 4 minus 3, it will become 1. The number of degrees of freedom for chi

square  of  (Refer  Time:  20:22).  So,  basically  what  will  get  in  the  previous  case  for

example, minus 2 log lambda x will be converging to chi square 1 distribution.

Now, this is a very use full thing, because once the convergence is there, then one need

not look for the exact distribution all the time. In certain cases, of course, like in the

normal distribution cases exact distributions we are able to derive, but many times like in

the  discrete  distributions  either  we have  to  deal  with the  distributions  like  binomial,

Poisson or we have to look at the special tables like we had mentioned about the 2 by 2



contingency  tables  testing.  So,  in  those  cases,  we  can  actually  consider  this

approximation, and usually it is considered to be good. 

(Refer Slide Time: 21:19)

More results about these things they are approved by Wilks 1937, Rao he has looked at

the asymptotic convergence the rate of convergence of this, and there are many other

authors who have actually considered the limiting distributions the book of Rao in 1973

discuss is in detail that Linear Statistical Inference book, they are discuss in detail the

asymptotic properties of the likelihood function. 

Now, I will consider two advance applications of this likelihood ratio test. So far whether

I was discussing the ump test, ump unbiased test most powerful test I have considered,

you can say simplistic situations, generally I was dealing with the univariate populations

are bivariate populations, but in practice there can be even more complex situations. For

example, I may have k-different populations, and I may like to check whether they are

means or whether their variances are equal. 

Now, in this case certainly the ump tests are ump unbiased tests are very difficult  to

derive. In fact, we cannot write down the form of the joint density function in a in the

form  of  multi  parameter  exponential  family,  so  that  this  parameter,  which  is  to  be

considered  occurs  there.  And therefore,  the  likelihood  ratio  test  seems to  be  a  good

option only thing is  we should be able to derive the maximum likelihood estimators

under  omega  as  well  as  under  omega  H.  So,  I  will  give  a  couple  of  examples  for



applications  when we are dealing  with multi  parameter  situations  and the number of

populations maybe more than two also.


