
Statistical Inference
Prof. Somesh Kumar

Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture – 51
Likelihood Ratio Tests- I

In the last few lectures, I have developed the theory of most powerful uniformly most

powerful; uniformly most powerful unbiased tests. So, the basic building block of these

tests was the Neyman and Pearson fundamental Lemma whose philosophy was that we

fix level of significance, for a fixed level of significance you derive the most powerful

uniformly most powerful or uniformly most powerful unbiased tests. 

However, we have seen that in a wide variety of problems these type of tests are not

applicable. For example, when we want to derive UMP tests then we are imposing a

condition on the family of distributions that they should have monotone likelihood ratio

property. Now there are large number of distributions which may not have monotone

Likelihood Ratio property. Further when we develop that theory of unbiased UMP tests

for hypothesis of that where the null hypothesis could be 1 sided or point null hypothesis

or an interval, but the alternative hypothesis was 2 sided, in that case the UMP test was

not available.

In fact, UMP unbiased test was derived, but it was for a 1 parameter exponential family.

Later on when we have developed the general theory of UMP unbiased tests, we have

considered multi parameter exponential families only and that too we should have the

complete sufficient exact statistic. Now there can be many practical applications where

these conditions will not be satisfied and therefore, we need certain other method for

deriving the tests. 

Now, as we have seen in the estimation problem one can restrict attention to the joint

distribution which we term as the likelihood function.  In the estimation problems we

considered that value of the parameter to be the maximum likelihood estimator which

maximize  that  likelihood  function.  Therefore,  this  maximization  of  the  likelihood

function is a heuristic thing; that means, on your own as a layman we think that we

should  consider  the  probable  values  are  the  most  probable  value  for  the  likelihood



function.  Now  using  this  philosophy  likelihood  ratio  tests  are  derived  and  let  me

introduce the theory of likelihood ratio test.
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So,  let  X be  a  random vector  with  probability  density  function  or  probability  mass

function say f x theta; theta belonging to omega. We want to test say H naught theta so

let me call H K, we have introduced the notation H for the null hypothesis and K for the

alternative hypothesis  when we were developing the UMP test,  we had considered 4

types of hypothesis H 1 K 1, H 2 K 2, H 3 K 3 and H 4 K 4. 

So, in general  I  will  consider theta  belonging to omega H versus theta  belonging to

omega k as the alternative hypothesis where omega H union omega k is equal to the

parameter  space.  Now,  we  may  consider  say  maximum  of  the  let  us  consider  the

likelihood function. So, we call it L theta x that is nothing, but the joint distribution of

the random variables under consideration, we consider the maximum value or the sup of

L theta x, let me call it L hat omega H. 

And we also consider the maximum of the likelihood function under omega k then a very

natural procedure is to consider the ratio, let me call it r x that is equal to L hat omega k

divided by L hat omega H. So, then r x greater than k is a possible rejection region, what

is the criteria for this?



Because if the alternative hypothesis is more likely to happen, then L hat omega k will

have a higher value and if null hypothesis is more likely to happen, then L hat omega H

will be higher value or bigger value. Therefore, the rejection region should be for the

larger values of this ratio, acceptance region for lower values. 

Now, this requires 2 maximizations and at least one of the maximizations could be more

complicated  we  have  seen  the  problems  like  1  sided  or  2  sided  hypothesis  testing

problems. So, overall consideration of L hat omega H and L hat omega k may be slightly

difficult and equivalent procedure considers say L hat omega that is the maximum of the

likelihood function over the full parameter space.
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And we define the ratio lambda x is equal to L hat omega H by L hat omega. Then the

likelihood ratio test is to reject H naught if lambda x is less than or equal to c and we will

determine and of course, see this  is maximization over the full  parameter  space.  So,

naturally you will have this thing between u and 1 and the constant c is determined from

the size condition supremum of the probability of lambda x less than c theta belonging to

omega H is equal to alpha. 

Now as a remark let me say that, if the distribution of lambda is continuous, then any

size alpha is attainable in case x lambda has a discrete distribution, it may not be possible

to derive a likelihood ratio test whose size is exactly alpha. 



However, this  is  happening because  likelihood ratio  test  the way I  am defining  it  is

actually  a non randomized test.  This happens in the Nyman Pearson theory we were

allowing the randomization, but in the likelihood ratio test randomization is not there.

So, this happens because likelihood ratio test is non randomized. 
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We have the following equivalence result, let me call it theorem 1; for a given alpha

belonging to 0 to 1 and for a simple versus,  simple hypothesis  distinct  problem non

randomized  Nyman  Pearson  test  and  the  likelihood  ratio  test  exist  and  they  are

equivalent. 

Because in the Nyman Pearson theory if you look at the simple verses simple you had f 1

by f  naught  which is  nothing,  but  the likelihood ratio  corresponding to  the null  and

alternative hypotheses as f naught and f 1. We have another result as we have seen in the

maximum  likelihood  estimation  because  of  the  factorization  theorem  the  likelihood

function can be written as a product of a function which is free from the parameter and

another term which is involved in the parameter.

So, when we take the ratio the term which is not having the parameter becomes gets

cancelled out and therefore, you are getting only the sufficient statistic. Therefore, for

testing say H theta belonging to omega H versus K theta belonging to say omega k, the

likelihood ratio test is a function of every sufficient statistic.  Proof is very simple by

factorization theorem, we can write the likelihood function as g T x theta into h x, where



T is a sufficient statistic. So, L hat omega that will be equal to h x into supremum of g T

x  theta  where  theta  belongs  to  omega  and  L hat  omega  H that  is  equal  to  hx  into

supremum of g T x theta; theta belonging to omega H. 

So, if I consider lambda x that will be simply supremum of theta belonging to omega H g

of T x theta divided by supremum of theta belonging to omega g of T x theta, which

depends on T. Therefore, the likelihood ratio test it will depend only on the sufficient

statistic. Now let me derive the likelihood ratio test for various problems for which we

have derived the Nyman Pearson tests that is the UMP unbiased test etcetera. For similar

problems  let  me  derive  the  likelihood  ratio  test.  So,  let  me  start  with  say  normal

distributions.
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So, likelihood ratio tests for parameters of a normal population. So, we have let X 1, X 2,

X n be a random sample, from say normal mu sigma square distribution. So, as before

the full parameter space omega it is a set of all mu sigma, such that mu is from minus

infinity to infinity and sigma is positive, if I say sigma square then I can write like that.

Let me consider; let us consider testing for mean, note here that I am considering here

full model; that means, both mu and sigma square are unknown. 

If  you remember  the  Nyman  Pearson theory  I  have  considered  various  possibilities,

initially when I tested for the mean I had assumed variance to be known and when I

tested for variance I had assumed mean to be known. And then later on we have derived



the test when both are unknown and in the final analysis we got the uniformly most

powerful  unbiased  tests  for  those  situations.  Now  in  the  likelihood  ratio  test  I  am

considering the problem, where both the parameters mu and sigma square are unknown. 

Now let us consider say the hypothesis of the nature that H 1, that is mu less than or

equal to mu naught against mu greater than or equal to mu naught. Now, without loss of

generality I can take mu naught to be 0. So, I can consider the hypothesis mu less than or

equal to 0 against mu greater than 0. Now we need to consider if we want to apply the

likelihood ratio test, then I need to consider L hat omega H by L hat omega and what is L

hat omega H? L hat omega H is nothing, but the maximization of the likelihood function

over the null hypothesis parameter space.

Similarly,  L hat  omega  is  the  maximization  of  the  likelihood  function  over  the  full

parameter space. So, if we take care of these values then let us write down omega is

written here, what is omega H then? Omega H is the set of all those mu sigma square for

which mu is less than or equal to 0 and sigma square is positive. So, note here this has

become a subset of omega let us write down the likelihood function, here we have 2

parameters. So, this is a joint distribution of X 1, X 2, X n. So, we have been writing this

terms several times.

So, it is 1 by sigma 2 pi to the power n e to the power minus 1 by 2 sigma square sigma

xi minus mu square. Now if we consider log of L, then that is equal to minus n by 2 log

of sigma square minus n by 2 log of 2 pi minus 1 minus 2 sigma square sigma xi minus

mu square. 
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If you look at the derivative del mu that is equal to sigma xi minus mu by sigma square

that is equal to n x bar minus mu by sigma square. So, this is less than 0, if mu is greater

than x bar it is greater than 0, if mu is equal to x bar. So, log L is increasing sorry this is

mu less than x bar. So, log l is increasing for mu less than x bar it is decreasing for mu

greater than x bar. 

So, maximum over mu is attained for mu is equal to x bar, this is on omega. See we are

firstly, considering the maximization over omega and then over omega H. So, and then if

I consider derivative with respect to sigma squared then I will get minus n by 2 sigma

square plus 1 by 2 sigma to the power 4 sigma xi minus mu square. 

Now, once again we combine the terms I can write it as sigma xi minus mu square, I can

take out 1 by 2 sigma to the power 4 maybe I can take out n also, so this divided by n

minus sigma square. Once again you note here this is greater than 0 if sigma square is

less than sigma xi minus mu square by n and it is less than 0 if sigma square is greater

than sigma xi minus mu square by n. So, log L is increasing for sigma square less than

sigma xi minus mu square by n and decreasing for sigma square greater than sigma xi

minus mu square by n. 
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So, maximum for sigma square is attained when sigma square is equal to 1 by n sigma xi

minus mu square. So, when we consider maximization of L over omega, we get at mu

hat let me write mu hat omega is equal to x bar, sigma hat square omega is equal to 1 by

n sigma xi minus x bar square. 

So, L hat omega is nothing, but the value evaluated at this point, that is 1 by 2 pi sigma

hat omega square to the power n by 2 e to the power minus 1 by 2 sigma omega hat

square sigma xi minus x bar whole square i is equal to 1 to n by n sigma xi minus x bar

whole square. So, if I substitute this term will get cancelled out and I will get it as simply

1 by 2 pi sigma omega hat square to the power n by 2 e to the power minus n by 2. 

So,  we  have  evaluated  the  maximization  of  the  likelihood  function  over  the  full

parameter space, in order to apply the likelihood ratio test I also need to consider in order

to evaluate L hat omega H, we consider maximization of L mu sigma square x over

omega H. Now, let us analyze over omega H. 
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We have already looked at the derivatives here, so look at del log L by del mu, we have

seen the behavior of it. So, let me give this some numbering here this is say 1 and this

one is say 2. 
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Because we will be using these expressions of del log L by del mu and del log L by del

sigma square. 
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So, from 1, we have the behavior of log L as, so let me just draw. So, it is something like

this is increasing up to x bar, so I am treating it as a function of mu and this is function of

mu. I am treating it as a function of, so as a function of mu it increases up to x bar and

thereafter  it  is decreasing.  Now it  will  depend upon where what is the position of 0

because in the omega H we have to maximize over minus infinity less than mu less than

or equal to 0 sigma square greater than 0; that means, mu is less than or equal to 0. So,

when we look at this let us look at there are 2 cases. 

One case x bar is less than 0, if x bar is less than 0; that means, 0 is say here in that case l

mu sigma square log L will be maximized at x bar. Now second case is x bar is greater

than 0, if x bar is greater than 0; that means, the position of 0 is here, if the position of 0

is here this is the likelihood function, it is increasing up to 0 and we are only looking at

this region, so the maximum value is attained at 0. 

So, then log L mu sigma square attains maximum at 0. So, what we are getting mu hat

omega H it is equal to minimum of x bar and 0, because it is x bar if x bar is less than 0

and it is 0 if 0 is less than x bar. So, at 1 place we may put equality here. 
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Let us look at the maximization of we also look at max with respect to sigma square.

Now when we look at the max with respect to sigma square, we have shown here that the

max is occurring at sigma square is equal to sigma xi minus mu whole square by n that is

a statement we gave here. For sigma square the max is occurring at sigma square is equal

to this quantity. Now this mu I had substituted as mu hat, now in this case mu hat is

modified.

So, accordingly sigma square will get modified and we get sigma omega H hat square

that will become 1 by n sigma xi minus mu hat omega H square i is equal to 1 to n. So, L

hat omega H that will be equal to 1 by sigma omega H hat square into 2 pi e to the power

n by 2 e to the power minus 1 by 2 sigma omega H hat square sigma xi minus mu hat

omega H square. 

Once again if I substitute the value of sigma omega H hat square then I will get n by 2

here. So, this is equal to 1 by 2 pi sigma omega H hat square to the power n by 2 e to the

power minus n by 2. So, the likelihood ratio test is to reject H 1 if lambda x that is equal

to L hat omega H by L hat omega less than say some constant c. 
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So, if I substitute the values of L hat omega H and L hat omega, then L hat omega is this

quantity and L hat omega L hat omega H and L hat omega both are given here. So, e to

the power minus n by 2 terms will get cancelled out and we will get the ratio as sigma

omega hat square divided by sigma omega H hat square to the power n by 2 less than c. 

Now, I can take this power 2 by n here, so this is equivalent to sigma omega hat square

by sigma omega H square less than another constant say c 1. Now let us substitute the

values here this is 1 by n sigma xi minus x bar square divided by 1 by n sigma xi minus

minimum of 0 and x bar square, so this gets cancelled out less than c 1. Now, if x bar is

less than 0 the left hand side is 1, if this is 1 then basically what we have said likelihood

ratio is always between 0 to 1 because in the numerator I have a smaller quantity than the

denominator.

So, this is the extreme case, if it is a extreme case then we should always accept H 1. So,

we always accept H 1 and actually the probability alpha will become 0. Now, when x bar

is greater than 0, then here minimum will become 0, so the test is reject H1 if sigma xi

minus x bar whole square divided by sigma xi square is less than c 1. 
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Or when sigma xi minus x bar square divided by sigma xi minus x bar square plus nx bar

square less than c 1 or if I take the reciprocal greater than say c 2. So, I can write it as in

n x bar square by sigma xi minus x bar whole square greater than say some c 3. 

I can take the square root because x bar is positive as x bar is positive I can take the

square root here this becomes the square root sigma xi minus x bar whole square greater

than say c 4, I can adjust again and write. So, basically if you remember this is the test

which we got in the UMP test also. 

If I consider root n x bar divided by root 1 by n minus 1 sigma xi minus x bar whole

square greater than say c 5. Now, this c 5 is determined by probability of root n x bar

divided by S greater than c 5. If you remember the definition of S square that was 1 by n

minus 1 sigma xi minus x bar whole square. So, n minus 1 S square by sigma square

follows chi square distribution on n minus 1 degrees of freedom. So, when mu is equal to

0 this will follow T distribution on n minus 1 degrees of freedom.

So, here this is determined by supremum of this when mu is less than or equal to 0 equal

to alpha,  this  supremum is  over  this.  Now let  us look at  this  thing root  what  is  the

distribution here? You are having root n x bar minus mu by S that follows T distribution

on n minus 1 degrees of freedom ok. So, this probability then can be written as root n x

bar minus mu by S greater than root n c 5 minus mu by S probability of this. 



Now, if  mu increases;  if  mu increases  this  limit  will  decrease  the lower bound here

because here it is coming as minus mu ok. So, if mu increases this will decrease, so this

probability will increase, this probability is increasing in mu. So, it will attain maximum

at mu is equal to 0.
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Therefore, the size condition is probability of root n x bar by S greater than c 5 at mu

equal to 0 is equal to alpha, but at mu is equal to 0 root n x bar by S this will follow T

distribution on n minus 1 degrees of freedom. So, c 5 is nothing, but the upper 100 alpha

percent point of the T distribution on n minus 1 degrees of freedom. If this is the curve of

T distribution on n minus 1 degrees of freedom then on the side you have T, then this

probably should be alpha. So, likelihood ratio test is accept H if that is always accept H 1

if x bar is less than 0 and reject H naught H 1 if a root n x bar by S is greater than t n

minus 1 alpha for x bar positive. 

So,  there is a slight modification from the UMP test  and UMP unbiased test  for the

situation we have derived if you remember in the lecture which I gave earlier. 
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The test that we derived here root n x bar; root n x bar by sigma xi minus x bar whole

square by n minus 1 square root.  So, the test  was in the terms of this.  So,  in many

situations the likelihood ratio test  yield the similar test as the in the Nyman Pearson

theory; that means, they are also the UMP unbiased tests and in many situation of 1

parameter they may be UMP tests also. 

However, we have seen that sometimes it may not happen like that and in that case we

need certain asymptotic properties fortunately for the likelihood ratio test the asymptotic

properties do hold; that means, asymptotic distribution of the test S statistic is nice it

becomes actually the chi square.


