
Statistical Inference
Prof. Somesh Kumar

Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture - 37
UMP Tests – I

So, far the testing procedure that we have discussed was based on the Neyman Pearson

and  fundamental  lemma.  The  main  assumption  that  we  made  in  deriving  the  test

procedure  was  that,  the  null  hypothesis  and  the  alternative  hypothesis  both  were

considered to be simple. And in this case when we fix the probability of type 1 error,

then we were able to derive the test which is having the minimum probability of type 2

error or the maximum power and we called it the most powerful test.

However in most of the real life situations, we do not come across the simple hypothesis

versus simple hypothesis problems in most of the complex situations we have composite

hypothesis.
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As a very simple case we may have the family of distributions as normal mu sigma

square distributions, and we may like to even now we may like to test something like

whether mu naught mu is equal to 0 or r mu is not equal to 0.



Note here that now this H naught is not a simple hypothesis this is composite because

sigma square is unknown. Here we have assumed both parameters to be unknown both

parameters  are  unknown.  Therefore,  these  are  now  composite  both  hypotheses  are

composite hypothesis and therefore, the Neyman Pearson lemma does not help us to give

a solution in this particular problem; that means, it does not give a most powerful test.

The simplest composite hypotheses are of this nature that we may have a one parameter

family say family of distributions with one parameter theta say f x theta, and we may like

to test  about  say H naught  theta  less than or equal to  theta  naught  against  say theta

greater than theta naught or alternatively we may have say H naught, theta greater than

or equal to theta naught against h 1 theta less than theta naught. Now let us remember

our cases that some examples we considered for the Neyman Pearson lemma.

Where we had considered theta is equal to theta naught against theta is equal to theta 1. I

had considered 2 cases; 1 was theta naught less than theta 1 and another was theta naught

greater than theta 1. When theta naught was less than theta 1; we got a 1 sided testing

region that is the rejection region that is for larger values of x bar we were rejecting H

naught.

Now, in that problem in place of theta 1 suppose we replace it by another value theta 2;

suppose we replace by another value theta 3 the testing procedure remains the same as

long as this s second value in the alternative hypothesis remains larger than theta naught.

In a similar way, if we are considering the reverse case theta naught greater than theta 1,

then the rejection region was for s smaller values of x bar.

And once again if we replace this alternative hypothesis theta 1 in the same direction;

that means, value which is le greater than theta naught or less than theta naught, then the

rejection region does not get affected. What does it mean? It means that for those values

we  are  getting  the  most  powerful  tests;  that  means,  this  normal  distribution  with  1

parameter the second parameter sigma square was considered to be known has certain

property.

Now, in these situations for the changing values, we get the maximum power at each of

the values this is called uniformly most powerful test. Now this family of distributions

which will satisfy this property; that means, where we will get such test, it  is having

some particular name it is called the families with monotone likelihood ratio property.



In particular for the one sided testing of hypothesis problems like theta less than or equal

to theta naught against theta greater than theta naught or theta greater than or equal to

theta naught against theta less than theta naught etcetera for such cases we are actually

getting the uniformly most powerful test. The results that are proved they are actually

you can say they are extensions of the Neyman Pearson fundamental lemma.

So firstly, let me define this families. So, let f x theta be a probability mass function or

density function of a random variable say x. Let us write down the ratio f x theta 1

divided by f x theta 2 let us call this name this ratio let me call it r x and let us take say

theta 1 greater than theta 2. If r x is a an increasing function of some variable say T x

then we say that the family of densities.
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The word densities means it includes the probability mass functions. So, that is f x theta,

theta belonging to the parameter space has monotone likelihood ratio, that we call MLR

in theta T x.

Let me give an example here. Say let us consider say x following a normal distribution

with mean theta and known variance 1. Let us write down the distribution f x theta is 1

by root 2 pi e to the power minus half x minus theta square. Let us consider this ratio r x

that is f x theta 1 divided by f x theta 2. Now when you write this ratio this gets cancelled

out and you have e to the power minus half x minus theta 1 square plus half x minus



theta 2 s square, that is equal to e to the power half theta 2 square minus theta 1 square

and then you will have plus theta 1 minus theta 2 x.

So, you can look at this, this is an increasing function. If I am taking increasing function

of x, if theta 1 is greater than theta 2 because this is constant and if theta 1 is greater than

theta  2 e  to  the  power this  becomes  an increasing  function  of  x.  So,  this  family  of

distributions  normal  theta  1,  where  theta  belongs  to  real  line  this  has  monotone

likelihood ratio in theta and x.

Now I have written here the distribution of 1 observation, suppose in place of x; I have x

1 x 2 x n suppose I have X 1 X 2 X n. In this case f x theta we have to write the joint

distribution of X 1, X 2, X n. So, the joint density of X 1 X 2 X n. So, let me give the

notation f x, here x is standing for the values x 1 x 2 x n of capital X 1 capital X 2 capital

X n.

So, this becomes 1 by root 2 pi to the power n e to the power minus 1 by 2 sigma x i

minus theta square. Let us simplify this we can write it as 1 by root 2 pi to the power n e

to the power minus half sigma x i square minus n theta square by 2 plus. Now you have

the cross product term twice x i theta with a minus sign and minus minus will become

plus and 2 will cancel out. So, you get twice n x bar theta where x bar is the 1 by n sigma

x i.
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.So, now you write down this ratio f x theta 1 divided by f x theta 2 that is turning out to

be. Now when you write the ratio this constant term will get cancelled out e to the power

minus half sigma x i square will get cancelled out. We will be left with e to the power n

by 2 theta 2 square minus theta 1 square plus n x bar theta 1 minus theta 2.

Now, this is constant, for theta 1 greater than theta 2 this becomes an increasing function

of x bar. So, this ratio and increasing function of T x is equal to x bar when theta 1 is

greater than theta 2. So, this family of distributions normal theta 1, when we are having n

observations; so we have MLR in theta and x bar we can say.

Now, the similar thing we can observe for various distributions let me give a couple of

more examples.  Here I  have considered the normal distribution when the variance is

assumed to be known. Now there can be other case where mean may be known and the

variance may be unknown let us take that case. Let me again consider say 1 observation

and then I will consider N observations generally we are dealing with the sample; so let

me take this case.

Here sigma square is a positive parameter, if we consider the density function here it is 1

by sigma root 2 pi e to the power minus x square by 2 sigma square where x is any real

number. Therefore,  if I consider the ratio f x sigma 1 square divided by f x sigma 2

square. Now this will give me sigma 2 by sigma 1 this 1 by root 2 pi will get cancelled

out, e to the power x square by 2, 1 by sigma 2 square minus 1 by sigma 1 square.

Now, let us take say sigma 1 square greater than sigma 2 square; that means, 1 by sigma

1 square is less than 1 by sigma 2 square. So, this term becomes positive and therefore,

this  is  increasing  function  of  x  square.  So,  this  family  of  normal  0  sigma  square

distributions, this has monotone likelihood ratio in sigma square x square.

 Now note here that suppose I take a sample here in place of X; let us take sample say x 1

x 2 x n following normal 0 sigma square and let us write the same thing once again.
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The joint distribution, the joint density of X 1, X 2, X n that will become 1 by sigma root

2 pi to the power n e to the power minus sigma x i square by 2 sigma square where sigma

square is positive and each x i is on the real line. So, when we write down the ratio, now

this term get cancelled out we will get sigma 2 by sigma 1 to the power n e to the power

minus sigma x i square by 2 1 by sigma 2 square minus 1 by sigma 1 square.

So, this I will put plus here. Once again you note here this is positive if sigma 1 square is

less than sigma 2 square sorry if sigma 1 square is greater than sigma 2 square, then this

term becomes positive. So, this is increasing in sigma x i square, that we will call T x.

So, this family has monotone likelihood ratio in sigma square and sigma X i square.

Now, this T x has a special role. When we will derive the uniformly most powerful test

you will see that the test  will  depend upon this itself.  So, I will  discuss a few more

applications a little later let  us look at the main result of this section now, that is an

application of the monotone likelihood ratio property how the uniformly most powerful

test exists.
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So, I state the theorem. For a proper statement of this theorem you may look at the books

of Lehmann and Romano 2005 or you may look at Rohatgi and Saleh books.

The  proofs  are  also  given  there.  So,  I  am not  discussing  the  proof  here.  So,  let  us

consider let the random variable X have probability mass function or probability density

function say f x theta with monotone likelihood ratio in theta T x. And of course, here

theta is a real parameter theta belongs to say theta which is subset of the real line.

So, the result that we are having here is that, for testing H naught theta less than or equal

to theta naught against H 1 theta greater than theta naught, there exists a uniformly most

powerful test that is UMP test, given by. As before, we will use the phi notation for the

test function. So, you reject if T x is greater than C, you reject with probability gamma if

T x is equal to C and you accept if T x is less than C; where C and this gamma are

determined  by expectation  of  theta  naught  phi  X is  equal  to  alpha,  let  me  call  this

conditions 1 and 2.

Note here that similarity with Neyman Pearson lemma; in the Neyman Pearson lemma

we had written f 1 by f naught greater than k. Now if f 1 by f naught ha is an increasing

function of T x,  then that region is  transformed to T x greater  than C. So, it  is as I

mentioned it is direct extension of the Neyman Pearson fundamental lemma only, the

result is coming from there. The power function that is we have used the notation say



beta is star theta, that is equal to expectation theta phi x is a strictly increasing for all

points theta for which it lies between 0 and 1.
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For all theta star the test determined by 1 and 2 is uniformly most powerful for testing H

prime theta less than or equal to theta prime against k prime theta, greater than theta

prime at level say alpha prime is equal to let me put a star here. This new hypothesis I am

calling H naught and h 1 star at alpha star is equal to beta star of theta star. And for any

theta less than theta naught, the test minimizes beta star theta among all tests satisfying

the condition 2. I will skip the proof here 1 can look at the book of Lehmann for the

detailed proof of these statements.

Now, one may note here I have considered theta less than or equal to theta naught against

theta greater  than theta naught.  As I gave the heuristic argument that in the Neyman

Pearson lemma and as also I gave the normal distribution example when we were testing

for the mean, the rejection region for the larger value of x bar and here it is for the larger

value of T x. So, if we reverse like for the null hypothesis region we consider grater and

for the null alternative hypothesis we consider less than or equal to then the rejection

region will also get the reverse.

So, what I just give it as a comment here. If we consider the say dual problem say H

naught theta greater than or equal to theta naught against H 1 theta less than theta naught,



the inequalities in 1 get reversed. So, you have the solution in a similar manner there. Let

me take an application here.

Say we have a random sample say X 1 X 2 X n from say Poisson lambda distribution.

And we consider say hypothesis lambda less than or equal to say lambda naught against

say  lambda  greater  than  lambda  naught.  Now let  us  look  at  this  family  of  Poisson

distributions whether it has a monotone likelihood ratio or not. So, the joint probability

mass function of X 1 X 2 X n; So, we write it as f x lambda product i is equal to 1 to n e

to the power minus lambda lambda to the power x i by x i factorial. That is equal to e to

the  power  minus  n  lambda,  lambda  to  the  power  sigma x  i  divided  by product  x  i

factorial.
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So, if we consider the ratio for lambda 1 greater than lambda 2 let us consider the ratio f

x lambda 1 by f x lambda 2. So, it is becoming e to the power minus n lambda 1, lambda

1 to the power sigma x i divided by product x i factorial divided by e to the power minus

n lambda 2, lambda 2 to the power sigma x i and this term will get cancelled out.

So, we can write it in a simplified fashion as lambda 2 minus lambda 1 lambda 1 by

lambda 2 to the power sigma x i. This lambda 1 by lambda 2 is greater than 1 because

lambda 1 is greater than lambda 2 therefore, this will become an increasing function, this

is an increasing function in T x is equal to sigma x i.



So, we have monotone likelihood ratio in lambda and sigma x i. So, we can apply the

theorem that I gave. If the family has monotone likelihood ratio in theta and T x then for

one  sided  null  hypothesis  versus  1  sided  alternative  hypothesis  the  uniformly  most

powerful test is obtained here. So, let me write it here. So, the UMP test is given by phi

x, this here x means x 1 x 2 x n it is rejecting if sigma x i is greater than C it is rejecting

with probability gamma if sigma x i is equal to C it is 0 if sigma x i is less than C.

Now, the sigma X i is actually let me write say it has equal to y, then that will follow

Poisson distribution  n  lambda.  Now C and gamma are  determined  by the  condition

expectation of lambda naught phi x is equal to alpha. Now this is reducing to let me write

it as say 1 and this as 2.
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So, this condition 2 let me simplify the condition 2. So, expectation of lambda naught phi

x since this phi x is completely dependent upon sigma x i that is y. So, it is becoming

probability of Y greater than c plus gamma times probability of Y is equal to c this is

equal to alpha when the true parameter value is lambda naught.

Now another point which I would like to explain here in the case of simple versus simple

hypothesis, we had the probability of type 1 error as a single value. But when we have

composite hypothesis for the null hypothesis, then the probability of type 1 error is a

function. However, this is an increasing function which I mentioned in the statement of



the  theorem  also  that,  the  power  function  is  strictly  increasing  function.  So,  the

probability of type 1 error is increasing.

So, when you are getting theta is equal to theta naught, then at that point the maximum

value is are obtained. So, effectively this condition is actually the size condition, that is

expectation of phi x equal to alpha lambda naught this is the maximum probability of

type 1 error here, that we are fixing to be equal to alpha. So, the size condition now it is

reduced  to  a  condition  which  is  really  involving  the  distribution  Poisson  n  lambda

naught. Therefore, from the tables of the Poisson distribution one can calculate this.

Suppose I say lambda naught is equal to 1 and n is equal to say 5 then basically we are

looking at the tables of Poisson 5 distribution. Suppose I say alpha is equal to 0.1, then

basically what we are seeing here is that what is the point from where. Now this C could

be need not be an integer actually we may fix that thing in such a way. If it is an integer

then this value may be positive if it is not integer then this may become 0.

Now, you may see  from the  tables  that  whether  this  randomization  with probability

gamma is required or not. If it is not required then this probability can be taken to be 0

there will be a point where after you will have the probability alpha. In case that is not

possible then we suitably choose a value where we a lot of probability and then we may

give some value of gamma also. So, now, these can be calculated from the tables of the

from the tables of the Poisson distribution.

We can also see a like a binomial distribution, we suppose we have a hyper geometric

distribution in all of suppose we have a negative binomial distribution in all of these

distributions we may able we are able to find out the uniformly most powerful tests. I

will consider this derivation of the tests in the following I will be discussing it in the next

lecture.


