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In the last lecture we had discussed what is the problem of statistical inference, what is

the  motivation  for  a  studying  statistical  inference  problems.  We had  seen  that  the

problem of statistical  inference can be broadly categorized into two parts:  one is  the

problem of estimation and the problem of testing of hypothesis.

So, we will start with the problem of estimation. Now, in the problem of estimation we

had seen two parts are there: one is the problem of point estimation and that is and there

is a problem of interval estimation.
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So, we start with the problem of point estimation and let us look at what are the basic

concepts that are needed. In a general problem of statistical inference we have seen that

the concept of population, the concept of a sample, the idea of a parameter and that of a

statistic. Now, when we talk about point estimate in estimation then the first thing is that

we have to identify an estimator to estimate the unknown parameter of the population.

So, for that we define what is a point estimator. So, any function of the random sample

which is used to estimate the unknown value of the given parametric function is called.



So, suppose we say parameter theta and we may consider a parametric function g theta

then this is called an estimator. So, in practice we will have a random sample. So, if X

say X 1 X 2 X n is a random sample from a population. Now, a probability distribution is

identified with the given population. So, a population with the probability distribution

say; P theta then a function say d X which is used for estimating g theta, then this is

known as an estimator. Now, in reality what will happen that this X 1 X 2 X n will take

some values because, when you go to the field and collect the data this X 1 X 2 X n will

correspond to some numerical observations. 

So,  let  x 1 x 2 x n be a  realization  of say X.  So,  let  me call  it  a  small  x then the

corresponding value of the estimator which is evaluated at this realization this is called

an estimate. So, we have two important concepts here: one is estimator and a realized

value of the estimator  that  is  called  an estimate.  So,  let  me explain it  through some

example.
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Let us consider we want to estimate say average height of adult males in a ethnic group,

in estimating the average height of say adult males in an ethnic group. So, we may use

the sample mean say X bar as an estimator. Now, if a random sample of say 50 has a

sample  mean  say  180 centimeter  then  180 centimeter  is  an  estimate  of  the  average

height. So, in a given statistical problem of point estimation we will be proposing some

estimators which are obtained through some concepts, through some rational reasoning



or through some rational decision making procedure. And, the realized values of that

function which we call now estimator will be used as estimates of the given parameters.

So, in short this is what we do it in a point estimation of certain parametric functions. So,

we  are  talking  about  parameter  repeatedly.  Now, this  parameter  of  a  population  for

example, when we say average height of adult males and now this parameter theta is the

parameter  of  the  corresponding  population  of  the  heights.  Now,  that  population  is

described by certain distribution it could be a gamma distribution, it could be a normal

distribution. So, this parameter lies in a certain range that range is called a parameter a

space. So, in a given problem we have to be careful that our estimator should take values

in the given parameter a space.

So, a parameter space is the set of all possible values of a parameter. So, if I use the

parameter theta then a space we can denote by say capital theta or omega etcetera. So,

these are the usual notations. Now, the question is that one can obtain estimators, as I just

now mentioned to estimate average height we may use sample mean as an estimator. If

we are estimating say average a speed of a vehicle we may use a harmonic mean, we

may  use  median.  We if  we  are  estimating  variability  of  a  population  then  we  may

consider range of the sample, we may consider mean deviation about the mean, we may

use the standard deviation about the mean etcetera.

So, we may be able to propose various estimators for a given parametric function of

interest. The question is that which one should be used. Therefore, the first point that

comes to the mind is that we should be identifying certain criteria which will tell; that

means, you can say certain desirable criteria that should be there present in the given

estimators.  That  means,  if  the  estimator  satisfies  one  or  more  of  those  criteria  it  is

supposed to be a good estimator. So, we may in the beginning I will mention certain

desirable criteria for estimators.
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The first such criteria is that of unbiasedness. So, as the name unbiasness suggests; that

means, we are looking at the estimators which do not show any bias towards anything.

That means, a rational thinking person should be able to use it by saying that he is not

biased by any other criteria other than the data itself. So, but in a statistical terminology

the unbiasness means that on the average the estimated value is equal to the value of the

parameter.

So,  let  us go back to  our  model  that  let  X 1 X 2 X n be a  random sample  from a

population with probability distribution P theta, where theta belongs to the parameter

space a script theta.  An estimator  T X where X denotes X 1 X 2 X n is said to be

unbiased for estimating the parametric function g theta, if expectation of T X is equal to

g theta for all theta. That means, on the average the estimator equals the parameter; that

means, if sufficiently large number of samples are considered then the average value of

the  estimator  calculated  from those many samples  will  be actually  equal  to  the  true

parameter value.

Now, if expectation is not equal to g theta, but we can write it as say g theta plus b theta

then b theta is called the bias of T. If b theta is always positive then T is said to be is said

to overestimate g theta. On the other hand if b theta is always less than 0 then T is an

under-estimator.  So,  in  different  estimation  problems  it  may  be  desirable  to  have

unbiased estimator or sometimes the situation may demand that we may overestimate or



sometimes  we may underestimate.  And, also the consequences  of  over  estimation  or

under estimation may be disasters in different ways.

For example, if you are considering building of a bridge then, if we say overestimate the

strength  of  the  concrete  that  is  being  used  to  build  the  bridge  then  it  may  be  very

disastrous. Because, it may break down when the vehicles are plying on the bridge and it

may lead to serious accidents. Similarly, in certain other cases underestimation may be

more serious. So, one has to be careful that how to control the bias of a given estimator.

So, let us take some examples.
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Now, let  us consider say a binomial  random variable  n p so; that means, there is an

experiment where the outcomes are Bernoullian trials and the number of successes X has

been recorded. So, the outcomes of the random sample is recorded in the form of the

total number of successes. Here we may consider n is known; that means the parameter

of interest is the probability of success or the proportion of successes. The parameter

space is the interval 0 to 1 and we may be interested in estimating the proportion p.

So, then you may consider the properties of the binomial distribution expectation of X is

equal to n p. So, expectation of X by n is equal to p. So, here we conclude that X by n

that is the sample proportion sample proportion is unbiased for p which is the population

proportion. Now, there may be a problem where we may be interested in estimating the

squared proportion. So, we may be interested for estimating p square then we further



notice the expectations here expectation of X into X minus 1 is equal to n into n minus 1

p square. 

So, this implies expectation of X into X minus 1 by n into n minus 1 is equal to p square.

So, unbiased estimate of p square is X into X minus 1 by n into n minus 1. And, yet

another  application  we may be interested  to  estimate  the  variability  of  this  binomial

distribution;  that  means,  variance  of  X that  is  n  p  into  1  minus  p.  Suppose  we are

interested to estimate the variance of the binomial distribution then we can make use of

the estimators of p and p square and substitute here, because this is equal to n times p

minus  p  square.  Now, for  p  and  p  square  we  have  already  obtained  the  unbiased

estimators.

So, if we write d X is equal to n times for p we write X by n and for p square we write X

into X minus 1 divided by n into n minus 1. If we simplify this, it turns out to be X into n

minus X divided by n minus 1. So, then this is unbiased for variance of X. So, this is

actually one of the common approaches to obtain the unbiased estimators; that means,

we consider the moments of the given distribution. For example, in the binomial case we

have  considered  the  first  two  moments  which  are  helpful  in  obtaining  the  unbiased

estimators of the population proportion a square or the variance of this. Let us take up

some other examples.

(Refer Slide Time: 17:55)



Suppose we are having a random sample X 1 X 2 X n from a Poisson distribution with

parameter lambda; now naturally we may be interested to estimate lambda itself. So, we

may  consider  say  T 1  X as  X  bar;  we  know that  the  first  moment  of  the  Poisson

distribution is X is lambda. So, expectation of X 1 is lambda and therefore, expectation

of X bar is also lambda so, this is unbiased. However, we may even consider any of the

X i's also we may consider say X 1 plus 2 X 2 by 3. Now, this is also unbiased for

lambda because expectation of X 1 is lambda expectation of X 2 is lambda.

So, it becomes lambda plus 2 lambda that is 3 lambda by 3 that is equal to lambda. So,

these are some unbiased estimators for lambda. Now, this brings us to a point that for the

same parameter we may obtain several unbiased estimators. And therefore, we may look

for further criteria to restrict the class of unbiased estimators also. So, we will consider

that in a short while. Here we may also consider that lambda is also the variance of this

distribution. If we see this as the variance then another unbiased estimator can be written

as say 1 by n minus 1 sigma X i minus X bar whole square.

Now, if there are several unbiased estimators we may consider say sigma C i T i, i is

equal to 1 to 4 and let me put j here because I have already used here. So, let me call it

say d X then this is also unbiased because each of this is unbiased, then if sigma C j is

equal to 1. If sigma C j, j is equal to 1 to 4 is equal to; that means, if we are having more

than one unbiased estimator then we can construct a large number or you can say an

infinite number of unbiased estimators also. Therefore, we need to put some further we

need to qualify with certain other criteria so, that we can restrict attention to few of them

only ok.

Now, if we notice this first 2 examples it is very clear that the sample mean will be

unbiased estimator for the population mean. As in the previous case we have seen here

lambda is the mean of this Poisson distribution and the sample mean X bar is unbiased

for this. So, is it true in general? The answer is yes, if the first moment exists then always

the sample mean will be unbiased estimator for the population mean. So, you can write

that, if expectation of X exists then in any given estimation problem the sample mean is

an unbiased estimator of the population mean. Similarly, we may consider the population

variance.



(Refer Slide Time: 22:01)

So, let us specify let expectation X square exist ok; that means, variance of X let us say

sigma square exists. Then the sample variance which we will denote by 1 by n minus 1

sigma X i minus X bar whole square is unbiased.
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So, let me look at a proof of this, expectation of S square that is equal to 1 by n minus 1

sigma expectation of X i minus X bar whole square. This we may write as 1 by n minus 1

sigma expectation of sigma X i square minus n X bar square. Now, here we may use the

property that expectation of X i square will be equal to mu square plus sigma square.



And, a similarly expectation of X bar square will be mu square plus sigma square by n

because variance of X by is sigma square by n. So, these things if we substitute here it

becomes 1 by n minus 1 n times mu square plus sigma square minus n times mu square

plus sigma square by n.

So, after simplification you can see here this n mu square cancels out and n minus 1

sigma square by n minus 1 that is equal to sigma square. So, this quantity that we have

defined here that is 1 by n minus 1 sigma X i minus X bar whole square this is termed as

sample variance, because this is an unbiased estimator for the population variance. We

may also notice here suppose, I want to estimate mu square. So, I have already obtained

unbiased estimators for sigma square, unbiased estimator for mu is available to us. So,

we consider expectation of X bar square by minus S square by n this is equal to mu

square plus sigma square by n minus sigma square by n so, this is equal to mu square.

So, that shows that how we can estimate some related parameters in a given estimation

problem using the concept of unbiasness. Let me give you a name here say d star X that

is equal to X bar square minus S square by n is unbiased for mu square.
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Let us consider say X having a density of exponential distribution lambda e to the power

minus lambda x. Let X 1 X 2 X n be a random sample from this population. Now, here

we know that the mean of the exponential distribution is reciprocal of the rate that is 1 by

lambda.



(Refer Slide Time: 25:55)

So, if we use this here expectation of X i is equal to 1 by lambda then this gives us that X

bar is an unbiased estimator for 1 by lambda. Not only that we may consider estimation

of the higher order moments also. For example, we may look at say expectation of X i to

the power k, in the exponential distribution this is equal to k factorial divided by lambda

to the power k.

So, we may write 1 by n k factorial sigma X i to the power k, i is equal to 1 to k. Let us

call it say d 1 X then expectation of this if you consider it will become 1 by n k factorial

and this will become k factorial by lambda to the power k and n will come. So, then this

becomes unbiased for 1 by lambda to the power k. So, that shows that moment of any

order can be evaluated in the case of exponential distribution. So, we can obtain unbiased

estimators for each of them.

So, these and other topics we will be covering in the forthcoming lectures.


