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In the last lecture, I introduced the concept of minimal sufficiency and completeness of

certain statistics or again these are also the properties of the family of distributions.
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Now, before we proceed further I will define a related concept that is called boundedly

complete, boundedly complete statistics or boundedly complete family of distributions.

So, we say that P is equal to P theta is a boundedly complete family of distributions. If

expectation of g X is equal to 0 for all theta and g bounded implies that probability of g

X is equal to 0 is 1 for all theta.

So, the difference from the definition of completeness is that there we wrote any function

g. So, expectation g X equal to 0 for all theta and any function g if that implies that the

probability that the function is 0 with probability 1 then it was complete. If I impose the

condition that g is bounded, then it will imply that probability of g X equal to 0 is 1 then

it  will  be  called  a  boundedly  complete  family  of  distributions.  So,  we can  say  that

completeness implies bounded completeness. However, the converse is not true I will

give an example here.



Let X be a random variable with probability mass function given by P theta X is equal to

X is equal to 1 minus theta square theta to the power x for x equal to 0 1 2 and so on.

And P theta X is equal to minus 1 is equal to theta here theta is between 0 to 1. Now, you

can easily see that theta plus sigma 1 minus theta square theta to the power x, x equal to

0 to infinity that is equal to theta plus 1 minus theta square divided by 1 minus theta,

because this is infinite geometric series with common ratio theta. So, this cancels out you

get to 1.

So, this is a proper probability distribution. You can say it is a shifted geometric kind of

distribution. Let us show whether it is complete or not ok.
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So, consider a function h X then its expectation can be written as h of minus 1 into theta

plus sigma h X into 1 minus theta square theta to the power x, x equal to 0 to infinity.

Now, suppose we equated to 0 for all theta in the interval 0 to 1.Now this term I take to

the right hand side and then we divide by 1 minus theta square. So, it is reducing to h X

in to theta to the power x, it is equal to minus h of minus 1 theta divided by 1 minus theta

square this is for all theta then the interval 0 to 1.

Further, this 1 minus theta square in the denominator. So, if I bring it to the numerator it

becomes 1 minus theta to the power minus 2 and I can expand because theta is in the

interval 0 to 1. So, this we can write as minus h of minus 1 into theta and this expansion

can be written as 1 plus 2 theta plus 3 theta square and so on. Now, if I consider these 2



terms, the left hand side is a power series in theta and the right hand side is also a power

series in theta. So, if I create the terms we get equating the coefficients of the power

series on both the sides, we get h X is equal to minus x into h of minus 1 for x equal to 0

1 2 1 so on.

Now if h of minus 1 is bounded then h of minus 1 must be 0 because if h of minus 1 is

not 0 then this function is unbounded, because it will be X into some constant. So, for

boundedness the only possibility is that h of minus 1 is 0 which will imply h of X is

equal to 0 for all x. That means, probability of h X is equal to 0 will be 1 for all theta and

the interval 0 to 1. So, h is boundedly complete not X is boundedly complete. But if h of

minus 1 is not 0 then h of X is also not 0 this implies probability that h X is 0 cannot be

1. So, h is not complete because expectation of h X is 0, but h X will not be 0 with

probability 1.

So, this  is  an example of a boundedly complete  family of distributions  which is  not

complete.
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Now, there are relationships between sufficiency and completeness also there is a general

way  of  determining  complete  statistics.  For  example,  if  the  distributions  are  in  the

exponential family I have already given the example of binomial distribution Poisson

distribution. So, in the Poisson distribution family is complete. If I consider sufficient

statistics or minimal sufficient statistics, that is running out to be sigma x i which is again



having Poisson distribution with parameter n lambda. So, if Poisson lambda is complete

Poisson n lambda is also complete.

So, sigma xi is complete. So, we can conclude that in most of the standard examples that

we have discussed the corresponding sufficient or minimal sufficient statistics will also

be complete. Let me just take the example of non regular family say; let me consider say

X 1 X 2 X n following uniform 0 theta distribution then X n is minimal sufficient we

prove that X n is complete. Let us consider the distribution of X n that is n x to the power

n minus 1 by theta to the power n 0 less than x less than theta it is 0 elsewhere.

So, if I consider expectation of say g of X n is equal to 0 for all theta then this statement

is equivalent to g x n x to the power n minus 1 by theta to the power n dx from 0 to theta

is equal to 0 for all theta. Now, this is equivalent to saying a function of x over all the

intervals 0 to theta is integrated to 0. Again by the Lebesgue integration theory it implies

that g star must be 0 almost everywhere this g star function I have taken to be this. So,

this implies that g X is equal to 0 almost everywhere on 0 to infinity. This implies that

probability that g X n is equal to 0 is 1 for all theta. So, X n is a complete a statistic.

So, there is a relation between minimal sufficiency and complete sufficiency. In fact, we

have the following theorem.
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If T X is complete and sufficient then T X is minimal sufficient. However, the converse

of  the above statement  is  not  true  that  is  we may have an example  of  say minimal

sufficient statistic which is not complete. Let us take say X 1 X 2 X m a random sample

from normal with mean mu and variance sigma 1 square and Y 1 Y 2 Y n. This is another

independent sample from normal with mean mu and variance sigma 2 square; here sigma

1 square and sigma 2 square are different.

Let us consider the joint distribution of X 1 X 2 X m and Y 1 Y 2 Y n. The joint pdf of X

1 X 2 X n Y 1 Y 2 Y n that is equal to 1 by root 2 pi to the power m plus n sigma 1 to the

power n sigma 2 to the power n e to the power minus 1 by 2 sigma 1 square sigma x i

minus nu square minus 1 by 2 sigma 2 square sigma yj minus mu square. This we can

simplify as 1 by root 2 pi to the power m plus n sigma 1 to the power n sigma 2 to the

power n e to the power minus sigma xi square by 2 sigma 1 square plus m mu X bar by

sigma 1 square minus mu square by 2 sigma 1 square minus sigma yj square by 2 sigma

2 square plus n mu y bar by sigma 2 square minus n nu square by 2 sigma 2 square.

So, if we apply the ratio by writing down this joint pdf at 2 points x, y and say x prime, y

prime then these terms will get cancelled out and we will be left with sigma x i square

minus  sigma x  i  prime square  in  2 parametric  function  X bar  minus  y  bar  into  the

parametric function, X bar minus X bar prime y bar minus y bar prime and sigma yj

square minus sigma yj prime square.
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So, if we write down this function here say f x y mu sigma 1 square sigma 2 square

divided by say fx prime y prime mu sigma 1 square sigma 2 square then that is equal to e

to the power 1 by 2 sigma 1 square sigma x i prime square minus sigma x i square plus 1

by 2 sigma 2 square sigma yj prime square minus sigma yj square then plus m mu or mu

by sigma 1 square sigma x i minus sigma x i prime plus mu by sigma 2 square sigma yj

minus sigma yj prime. So, this is independent of mu sigma 1 square and sigma 2 square

if and only if we have sigma x i sigma x i square sigma y i sigma y i square is equal to

sigma x i prime sigma x i prime square sigma yi yj prime and sigma yj prime square.

So,  T is  equal  to  sigma x i  sigma x i  square sigma y j  sigma yj  square is  minimal

sufficient. However, T is not complete. Let us consider g T as a sigma x i by m minus

sigma yj by n. Then expectation of g T is equal to 0 for all mu sigma 1 square sigma 2

square because expectation of x i and expectation of yj is mu. So, it is mu by m minus n

mu by n. But g T is not 0; actually probability that g T is not 0 is 1, probability that g T is

equal  to 0 is  actually  0.  So, T is not complete.  So, this  is  an example of a minimal

sufficient  statistic  which is  not complete.  To determine complete  statistics  in  general

settings or to prove the completeness in general settings of exponential family one only

needs to check the kind of parameter space that we are having.
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So, we have the following general theorem which I will state without proof for the proof

one can look at the book of Layman testing of hypothesis book. So, let X be a random



vector with probability distribution in an exponential family. Say we write it in the form

c theta e to the power sigma theta T x into hx. So, here c theta is a function of parameter

h X is function free from parameter and parameter is occurring in the exponent, here

theta is equal to theta 1 theta 2 theta k that is it is belonging to R k. Let me say it belongs

to omega and omega is a subset of R k.

Let us write T as T 1 X and so on T k X. Then T is complete provided omega contains a k

dimensional  rectangle.  If  you look at  the  previous  example  here this  is  actually  a  3

parameter distribution here. Here what we are getting is 1 by 2 sigma 1 square or you can

say 1 by sigma 1 square mu by sigma 1 square then 1 by sigma 2 square and mu by

sigma  2  square.  However,  they  are  not  independent.  Actually  the  parameter  is  4

dimensional. If we write theta 1 is equal to say minus 1 by 2 sigma 1 square theta 2 is

equal to mu by sigma 1 square theta 3 as equal to say minus 1 by 2 sigma 2 square and

theta 4 is equal to say n say mu by sigma 2 square then this is a 4 dimensional parameter.

But there is dependency upon that for example, given theta 1 theta 2 and theta 3 we can

determine theta four. So, the parameter space does not contain a 4 dimensional rectangle

and that is why we could actually show that this is not complete T was not complete

here. We have seen the application of sufficiency in estimation problems. We saw that if

we have an unbiased estimator we can certainly improve upon it by conditioning upon

the sufficient statistics, the result was known as the Rao Blackwell theorem. Now, if we

couple this concept with the completeness we get a stronger result. In fact, we can reduce

the problem to determination of the uniformly minimum variance unbiased estimator; the

resulting result which is actually associated in the name of Lehmann Scheffe.

So, I will come couple the 2 results Rao Blackwell and Lehmann Scheffe and we call it

Rao Blackwell Lehmann Scheffe theorem. Let X have probability distribution P theta;

theta belonging to say omega and T X be complete and sufficient, then h T is UMVUE of

expectation of h T; let us call it say g of theta. That means, for any estimable unbiased

estimate function g theta if I have an unbiased estimator which is dependent upon the

complete sufficient statistic then that will be actually UMVUE. Let us look at the proof

of this.

Let say d X be an unbiased estimator of g theta. Then you will have consider expectation

of d X given T; let me denote it by say d star. Since, T is sufficient d star t will be free



from theta, because the conditional distribution of X given T is independent of theta.

Therefore, this expectation will not contain any term of theta and we can call it d star t

and so, d star t is d star T suppose I had capital T here, this is an estimator.
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Now, we have already seen that by Rao Blackwell theorem d star T is also unbiased for g

theta and variance of d star was less than or equal to the variance of d T.
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Now, consider expectation of h T minus d star T then that is 0 because both of these are

unbiased for g theta. Now, this is a function of T and T is complete. Since, T is complete



the  above  statement  implies  that  h  T must  be  equal  to  d  star  T with  probability  1.

Essentially  it  proves  that  h  T is  a  unique  unbiased  estimator  of  g  theta.  So,  h  T is

UMVUE.

Actually g star d star is also UMVUE, but these 2 we differ only on a set of measure 0.

Now, this result is extremely useful for finding out the UMVUEs. We have seen actually

in the earlier method of lower bounds that many times whatever best unbiased estimator

we are able to think of the variance of that is not attaining the lower bound, whether we

are  considering  the  Fisher  Rao  Cramer  lower  bound,  Bhattacharya  lower  bound  or

Chapmans Robbins Keifer low lower bound etcetera. In many of the cases we saw that

the  variance  of  the  unbiased  estimator  was  bigger  than  the  lower  bound  the

corresponding lower bound. However, this method when we are considering a function

of  complete  and  sufficient  statistic,  it  immediately  proves  that  the  corresponding

estimator will become uniformly minimum variance unbiased estimator.

Essentially  what  it  is  doing?  It  will  actually  show  that  the  corresponding  unbiased

estimator is actually the only unbiased estimator available except of course, on a set of

probability 0. So, since it is unique certainly it is UMVUE. So, if we go back to various

problems where the lower bound was not attained, for example, if you consider normal

mu sigma square where mu is unknown and we were considering the estimation of sigma

square. So, let us consider say X 1 X 2 X n follows normal mu sigma square mu and

sigma square are unknown and we have this S square as 1 by n minus 1 sigma x i minus

X bar whole square this is unbiased for sigma square.

Now, in this problem X bar and S square is complete and sufficient.  So, S square is

UMVUE. We had noticed here that in this particular case, the lower bound that was

attained by the method of Fisher Rao Cramer, it was lower than the variance of S square.

The variance of S square was 2 sigma to the power 4 by n minus 1 and lower bound was

2 sigma to the power 4 by n, but here in this method UMVUE proving is easy, because

we are just looking at the expectation of S square, since it is equivalent it is a function of

the complete sufficient statistics. So, it becomes UMVUE.
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Let us take other related examples also. X 1 X 2 X n following uniform 0 theta. Here we

have shown that X n is complete and sufficient.

Now, if we look at expectation of X n that is x into n x to the power n minus 1 by 2 theta

to the power n x then this is equal to n by n plus 1 theta. That means n plus 1 by n X n is

unbiased for theta. Now, this is a function of complete sufficient statistics. So, by Rao

Blackwell Lehmann Scheffe theorem we conclude that n plus 1 by n X n this is UMVUE

for theta.

We have also seen the standard distributions like Poisson distribution; where for lambda

we are able to derive the UMVUE, but for lambda square we are not able to derive or if I

can see that e to the power minus lambda. Then we were not able to derive the UMVUE,

but using this method we can derive. Let me explain this here.

Let us consider say X 1 X 2 X n following Poisson lambda distribution lambda positive.

Now, here X bar or you can say sigma X i this is complete and sufficient. Suppose I am

considering g lambda is equal to e to the power minus lambda which I had explained

actually this is probability of X 1 is equal to 0 that is the proportion of 0 occurrences in a

given problem. Let us define say d X 1 is equal to 1 if X 1 is 0 and it is equal to 0 if X 1

is not equal to 0.



(Refer Slide Time: 31:38)

Then, if I consider here expectation of d X 1 then that is equal to probability of X 1 is

equal to 0 that is equal to e to the power minus lambda. So, d X 1 is unbiased for g

lambda.

However, this is not UMVUE because this is not a function of the complete sufficient

statistic.
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So, if I apply the Rao Blackwell Lehmann Scheffe theorem, if I consider Rao Blackwell

Lehmann Scheffe theorem; if I consider expectation of d X 1 given T T sigma X i or X



bar we can write then this is UMVUE of g lambda. So, the only thing remaining is that

determination of this function, we can determine it easily.

Let us denote it by h T, expectation of say d X 1 given T is equal to small t. Then this is

equal  to  expectation  of  now, d  X 1 takes  only  2 values  1  and 0.  So,  it  is  equal  to

probability of X 1 is equal to 0 given T is equal to t, because d X 1 is equal to 0 then

probability of X 1 is not equal to 0, but when u 0 multiplied then that value will not

matter; X 1 not equal to 0 given T is equal to t. So, this term is vanishing.

So, we need to only determine this conditional probability that is probability X 1 is equal

to 0; T is equal to t divided by probability T is equal to t that is equal to probability X 1 is

equal to 0. Now, this T is nothing but sigma X I; i is equal to 1 to n. If I say X 1 is equal

to 0 then we can say sigma of X i from 2 to n is also equal to t.

Now, here you notice that the sum of independent Poisson’s is Poisson.
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So, the distribution of T will be Poisson n lambda and distribution of sigma X I, i is equal

to 2 to n that will be Poisson n minus 1 lambda. So, if we use this here X 1 and sigma x i

from 2 to n these will  be independent.  So, this can be written as the product of this

probability. So, it becomes probability of X 1 equal to 0 in to probability of sigma X i

from 2 to n is equal to t divided by probability T is equal to t. So, that is equal to e to the

power minus lambda lambda to the power 0; so, that term will not come. Then this is



following Poisson n minus 1 lambda. So, it is becoming e to the power minus n minus 1

lambda n minus 1 lambda to the power t divided by t factorial and then probability T is

equal to t that is e to the power minus n lambda n lambda to the power t into t factorial.

So, these terms get cancelled out and we are left with n minus 1 by n t. So, h T is equal to

1 minus 1 by n to the power of T; this is UMVUE of e to the power minus lambda. So,

this  Rao  Blackwell  Lehmann  Scheffe  theorem  is  extremely  useful  to  determine  the

UMVUE for various functions where the method of lower bounds is not applicable. I

will be introducing in the next classes.


