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Minimal Sufficiency, Completeness – II

Now, we define the concept  of Minimal  Sufficient  partition and minimal  sufficient  a

statistics. 
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So, a partition say P is said to be minimal sufficient if this is sufficient and second if P

star  is  any other  sufficient  partition,  then  P is  then  P star  is  sorry;  then  P star  is  a

reduction of P. No, I am sorry this is written wrongly. If P star is any other sufficient

partition,  then P is  a reduction  of  P star. So,  let  me explain  we will  call  it  minimal

sufficient partition if first of all this should be sufficient partition.

And if there is any other sufficient partition then this should be a reduction of that. That

is why this is the maximal reduction or we say that it is a minimal sufficient partition. So,

a statistic which induces the minimal sufficient partition is called a minimal sufficient

statistic. So, we can say that, a statistic T is minimal sufficient, if it is sufficient and if S

is any other sufficient statistic, then T is a function of S. 



So, that is how it is the minimal sufficient that is the maximal reduction of the data. Now,

the question is that how to determine a minimal sufficient statistic or a minimal sufficient

partition in a given problem. This problem is settled by Lehman and Scheffe in 1950 and

55  in  papers  in  Sankhya.  We consider  here  the  case  when the  distribution  is  either

discrete or continuous. 
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So, let us consider f x theta let f x theta denote the joint probability density function or

probability mass function of X; that means, we have observations X 1 X 2 X n which we

are  calling  as  X here.  Now two points  x  and y  in  the  sample  space  are  said  to  be

equivalent if the ratio f x theta by f y theta does not depend on theta. Of course, when we

write the ratio of the densities at two different variable points and there is a possibility

that either the numerator or the denominator may be 0 or both may be 0.

So, in that case we qualify this statement by saying whenever this ratio is defined. So,

this we say that x and y are equivalent and we use the notation x is equivalent to y. Then,

this relation is an equivalence relation because it is reflexive if I consider f x theta by f x

theta that is going to be 1 which is free from the parameter. If f x theta by f y theta is free

from theta then f y theta by f x theta is also free from the parameter. Therefore, x related

to y is equivalent to saying y is equivalent to x so the relation is symmetric.

If I say x is equivalent to y that is f x theta by f y theta is independent of theta and if I say

y is related to z or y is equivalent to z then f y theta by f z theta is independent of theta.



So, if I consider f x theta by f z theta then that is equal to product of these two terms. So,

that is also free from so this is independent of theta that is we can say x is equivalent to z.

So, the relation is also transitive.  So, this is an equivalence relation and it  induces a

partition of the sample space into equivalent sets. That means, if I consider one set in this

partition class then within that class all the points will be equivalent and if I take two

different partition sets then the points in that will not be equivalent. 

So, now let us consider for each point x in the sample space, define D x as the set of all

the y’s such that y is equivalent to x. That is for every point, whatever be the equivalent

points I will put them in the set D x. Then x belongs to D x and also if x belongs to D y

then y will belong to D x. So, in this case D x and D y are same. And also there will be

place where the density will take value 0 that is density or the probability mass function

we put in another set. Let D naught be the set of all those points for which f x theta is

equal to 0 for all theta. 
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So, now each x lies in some D and D’s do not overlap, they form a partition of the

sample space. Let us call this partition pi this partition I will name as pi. 
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First we prove that pi is a sufficient partition. Now, let us consider for each set D, let x D

be a representative point ok. Now, let G x denote this association; that means, from D to

x D we are having a mapping. So, let G x denote this mapping from x to D x and to x D.

So, for a given point x we have the point D x and then I am choosing a representative

point D x of that set. That means, in this set D x all the points are equivalent to each

other and I choose I specify one point x D there.

So, G x is a statistic defined on this partition. Now for any partition set D, of course, I am

not considering D naught where f x theta is 0 and for any x in D let us write f x theta.

Now x belongs to D x and x D also belongs to this. So, f x theta divided by x D theta is

free from the parameter; that means, this is a multiple of f x D theta by a term which we

can say it is free from theta it is a function of x and x D. So, we can call it a function of x

and G x and f G x theta, this x D I am writing as G x which we can write as f x theta is

equal to g of G x theta m to h of x. Where, H of x is actually 0 if x belongs to D naught

and it is equal to k of x G x if x does not belong to D naught. And g of G x theta is

nothing, but f of G x theta. 

Now, if you see this carefully this is nothing, but the factorization here. So, we conclude

that G x is in a sufficient statistic and the partition pi is sufficient partition because, that

is induced by g.
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Now let us consider. Now, we prove that pi is minimal sufficient. For that let us consider

another  say  H x that  H x  be  any other  sufficient  statistic  and let  the  corresponding

partition sets be let me call them E. The partition sets induced by pi were D and the

partition sets induced by E let me call by H let maybe call it to be E.

Now, if we can show that the minimality of pi will follow if we can show that each set in

E is contained in some D. Except of course, the points where the probability is 0. So, let

us consider x and y be points in E, so that say H x is equal to H y. Now H is sufficient so

we can write f x theta is equal to say alpha x into beta of H x theta. Now, that we can

write as alpha x beta of H y theta and f y theta we can write as alpha y beta H y theta. So,

if I take the ratio here we get f y theta by f x theta is equal to alpha y by alpha x; that

means, we can say f y theta is equal to a function of say x y into f x theta. 

So, x is equivalent to y that is x y belong to same D. Thus, each set E is contained in

some D. Of course, except possibly those points x such that alpha x is equal to 0. So, pi

is minimal sufficient. Because, pi is a reduction of this partition that we have introduced

second  partition.  So,  this  gives  us  a  method  of  determining  the  minimal  sufficient

statistics. What we consider that you take ratio f x theta divided by f y theta and this

should be free from the parameter. So, what is the partition that will induce this condition

and the corresponding sufficient statistic corresponding statistic then if you find out that

will be minimal sufficient. So, let me explain through some examples. 
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Let us consider the cases of the standard estimations suppose I consider Poisson lambda

distribution. And we denote by X the X 1 X 2 X n and by small x we denote the points.

So, consider the f x lambda here that is e to the power minus n lambda lambda to the

power sigma x i divided by product of x i factorial i is equal to 1 to n. So, let me consider

the ratio f x lambda divided by f y lambda then that is equal to e to the power minus n

lambda will cancel out we will get lambda to the power sigma x i minus sigma y i and

product of y i factorial divided by product of x i factorial.

Now, this term is dependent upon parameter through this and we can easily see that this

is independent of lambda if and only if sigma x i is equal to sigma y i. So, whether

previous result that we have proved of laid by Lehman and Scheffe we conclude that T X

is equal to sigma X i is minimal sufficient. Of course, we can say that any one to one

function of a minimal sufficient statistic is also minimal sufficient. Let me just take up

the cases of the sufficient statistics that we worked out in the previous classes. We had

seen like binomial distribution, normal distribution, exponential distribution etcetera let

us look at each of those cases and see what were the sufficient statistics. 
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Consider this case, X 1 X 2 X n is a random sample from normal mu sigma square and

sigma square is known. Now, in this case the joint distribution that we wrote was of the

form 1 by root 2 pi to the power n e to the power minus sigma x i square by 2 e to the

power minus n mu square plus n mu x bar. Now in this case if I consider the ratio by

taking f x mu divided by f y mu this term will become free from the variable free from

the parameter e to the power minus n mu square will also cancel out we will be left with

e to the power n mu x bar minus y bar. Now that will be free from mu if and only if x bar

is equal to y bar and therefore, X bar is the minimal sufficient statistics.
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So, like that if we consider various problems like in the second case we have taken mu

naught is known. And in this case we figured out that sigma X i minus mu naught whole

square is sufficient so this will also become minimal sufficient. When both mu and sigma

square  are  unknown  then  sigma  X  i  and  sigma  X  i  square  will  become  minimal

sufficient. So, in most of the problems where we have applied factorization theorem we

actually  have a factorization.  So, if  we write  down the ratio  then the  term which is

consisting of the parameter theta there then it is related to g of T X theta divided by g of

T Y theta. 

So, this ratio if you consider and obtain the condition when it is going to be free from the

parameter, that will give the minimal sufficient statistics. So, like that if I just mention X

1 X 2 X n follow normal mu sigma square. So, if mu and sigma square are unknown then

sigma X i and sigma X i square is minimal sufficient. Of course, you can say X bar and S

square is minimal sufficient. And we can answer various other questions let me just tell

few of this here. 
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Let us consider say exponential distribution with parameter lambda. Here if I write down

the ratio we will get sigma X i as the minimal sufficient. 
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If we consider exponential distribution with location parameter then X 1 will be turning

out to be minimal sufficient. If we consider say two parameter exponential distribution

with parameter mu and sigma here then X 1 and X bar or X 1 and sigma X i will be

minimal sufficient. If we consider say a double exponential distribution in that case the

full sample which is written in by a reduced to the order statistics that will be minimal

sufficient. 
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If we consider uniform distribution on the interval 0 to theta then X n will be minimal

sufficient.  If  we  are  considering  exponential  family  then  this  statistic  that  we  have

written this will be minimal sufficient. 
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Let me introduce another concept that is completeness. Let X be a random variable with

probability distribution P theta; theta belonging to theta. So, we say that the family of

probability distributions P that is equal to P theta; theta belonging to theta is complete if,

expectation theta g x is equal to 0 for all theta belonging to theta and any function g



implies that probability that g x is equal to 0 is 0 is 1 for all theta belonging to theta.

Then a statistic T is said to be complete if the family of probability distributions of T is

complete. 

Let me give an example here. Let X follow say binomial n p distribution where n is

known and parameter p lies between 0 to 1. Let us consider expectation of g x is equal to

0 for all p in the interval 0 to 1. Now, this statement is equivalent to g x n x p to the

power x 1 minus p to the power n minus x x is equal to 0 to n that is equal to 0 for all p

belonging to 0 to 1. 

Now this we can also write as see 1 minus p to the power n we can cancel out on both the

sides and let us write say let me write say s is equal to p divided by 1 minus p. So, this

will be any positive term. So, we can say h x into s to the power x x equal to 0 to n is

equal to 0 for all s greater than 0 where h x is nothing, but the function g x into n x ok.

Now, if you see this left hand side this is a polynomial of degree n in s and I am saying it

is vanishing identically over an interval.
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This implies that h x must be 0 for all x; now, here for all x means because x can take

values 0 1 to n. This means that probability that h x is equal to 0 is 1 for all p. So, the

family of binomial distributions is complete. 
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So, the family of binomial distributions n p where p lies between 0 to 1 is complete or we

can say here x is a complete statistic. Let us take another example say X follows Poisson

lambda.  Then  lambda  is  a  positive  parameter  here,  let  us  write  down the  statement

expectation of g x is equal to 0 for all lambda. Now, this is equivalent to sigma g x e to

the power minus lambda lambda to the power x by x factorial x is equal to 0 to infinity

that is 0 for all lambda greater than 0. Now e to the power minus lambda is a positive

term so we can multiply by e to the power lambda on both the sides. This statement

becomes equivalent to say g star x in to lambda to the power x where this g star is

nothing, but g x by x factorial. 

Once again if you notice on the left hand side I have a power series in lambda which is

vanishing identically over the positive half of the real line. So, if a power series vanishes

identically over an interval all the coefficients must vanish. So that means, this is equal

to 0 for all x equal to 0 1 2 and so on. Therefore, we can say that probability that g star X

is equal to 0 is 1 for all lambda. Now g star is nothing but g x by x factorial; that means,

g X itself is 0 with probability 1. So, this family of probability distributions of Poisson

lambda is complete. 



(Refer Slide Time: 32:23)

Let us consider say X follows normal mu 1, here mu is any real number let us write

down expectation of g X is equal to 0 for all. Now, this is equivalent to saying g x 1 by

root 2 pi e to the power minus 1 by 2 x minus mu square dx. This we may write as g x

into e to the power minus x square by 2 e to the power mu x dx is equal to 0 for all mu

belonging to R. 

Now this is nothing, but the bilateral or bi-variate Laplace transform of this function and

we are saying this vanishes identically and therefore, the function itself should vanish.

That means, we should have g x is equal to 0 almost everywhere on x real line. This

means that probability that g X is equal to 0 is 1 for all mu. So, the family of the normal

distributions is complete family. 
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Let us consider X following uniform 0 theta, expectation of g X is equal to 0 for all theta

this is equivalent to the statement g x by theta dx 0 to theta is equal to 0. Now this term I

can adjust here. So, what we are saying is that the integral of g x is 0 for all values for

over  all  the  intervals  of  the  form 0 to  theta.  Therefore,  we can  using  the  Lebesgue

integration theory we can say that the function gx itself is 0 almost everywhere; that

means, probability that g x is equal to 0 must be 1 for all theta. 

So, the family of uniform distributions is also complete. So, what in the next lecture I

will  give  a  general  framework  for  the  completeness.  We will  also  define  bounded

completeness and the consequence of the sufficiency and completeness is that we can

easily derive uniformly minimum variance unbiased estimators. So, we will give these

applications in the next lecture. 


