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Sufficiency and Information – I

In the previous class I have explained the concept of Sufficiency; this concept is the

concept which is called the principle of data reduction. So, we have a random sample X

1 X 2 X n, but if we have a sufficient statistic t then that is sufficient that gives the

complete information about the parameter which is contained in the sample. So, we did

not retain it. We have given one theorem which is called factorization theorem and this is

useful for deriving sufficient statistics in various probability models.

Yesterday I have discussed the normal probability model and I have shown you that how

if we change the parameter is space; that means, whether we have mu known or sigma

square known or both are unknown, in each of the cases the sufficient statistics changes.

So,  sufficiency  is  the  property  of  the  probability  model  under  consideration;  let  me

explain it through few more examples.
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And  we  will  use  the  concept  of  this  factorization  theorem  here,  let  me  start  with

exponential  distribution  let  X  1  X  2  Xn  follow  exponential  distribution  say  with

parameter lambda.



So, in the factorization theorem we need to write down the joint density of X 1 X 2 X n

that is equal to lambda to the power n e to the power minus lambda sigma x i. Now this

whole thing we can write as a function of sigma x i and lambda and hx; this h x I am

taking  to  be  1  itself  the  constant.  So,  you  can  see  by  factorization  theorem,  by

factorization theorem sigma x i is sufficient. Let us consider another exponential model

in which in place of a scale parameter we will have a location parameter.

So, let us consider say X 1 X 2 Xn following exponential say theta minus x, where x is

greater than theta 0 elsewhere. Now in this case the joint density of X 1 X 2 X n is f of x

theta that is equal to e to the power n theta minus sigma x i. However, this description of

x i greater than theta also plays a role here, now if we want to write it as a product here

we will make use of the indicator function. So, we can write it like this e to the power

minus sigma xi e to the power n theta indicator function of the set x 1 from theta to

infinity and indicator function of other x i’s from 2 to n from x 1 to infinity.

So, what we can consider we can write it as g of x 1 theta into h of x, where h of x I am

writing as e to the power minus sigma x i into product i is equal to 2 to n I of x i x 1 to

infinity. So, here this x 1 x 2 x n they are denoting the order statistics of x 1 x 2 x n. So, g

is this function, this is a function of x 1 and theta. So, we conclude that x 1 is so, x 1 is

sufficient.
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Now, note here when we had lambda as the parameter and here we had a scale model the

sufficient statistic was sigma x i, although here again we are dealing with exponential

distribution, but the nature of the parameter has changed. And therefore, the sufficient

statistic is now the minimum of the observations.
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Now in a similar way let us take up the two parameters exponential distribution let us

take X 1 X 2 X n be a random sample from a two parameter exponential distribution; say

with density function f x mu sigma is equal to 1 by sigma e to the power minus x minus

mu by sigma for x greater than mu and it is equal to 0 otherwise. So, once again the joint

probability density function of X 1 X 2 X n this is now 1 by sigma to the power n e to the

power n mu by sigma e to the power minus sigma xi by sigma. And, once again the

condition that each of x i is greater than mu I can expressed in terms of the indicator

function like x 1 is from mu to infinity and x i is other x i is they are from x 1 to infinity i

is equal to 2 to n.

So, this portion I can write as g of x 1 sigma xi and mu sigma and this part is hx. So, here

we conclude that X 1 and sigma Xi is sufficient or we can also say X 1 and X bar

because this is a 1 to 1 function of this is sufficient. I also want to mention here we have

earlier  considered  the  maximum  likelihood  estimators;  now  let  us  remember  our

maximum likelihood estimators for each of these problems for example, in this case the



maximum likelihood estimator for lambda was 1 by x bar which is the function of sigma

xi.

In this particular case the maximum likelihood estimator was x 1 that is a minimum of

observations and it is sufficient here. Similarly here you see the maximum likelihood

estimator for mu and sigma where X 1 and X bar minus x 1 respectively which is again a

1 to 1 function of X 1X bar that is a sufficient statistics. So, we can observe that the

maximum  likelihood  estimator  if  it  is  exists  is  actually  a  function  of  the  sufficient

statistics.

The reason is  obvious because in the factorization theorem we are writing down the

density as a function of the parameter and the sufficient statistics into a function which is

free from the parameter. Now in the method of maximum likelihood estimator we are

maximizing the density function or the mass function with respect to the parameter. Now,

the part of the density which contains the parameter contains the variable only through

the  sufficient  statistics.  Therefore,  the  maximization  problem will  give  a  solution  in

terms of the sufficient statistics alone.
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So, we have a general comment here that if maximum likelihood estimators exist they

are  functions  of  sufficient  statistics.  Let  us  take  some  more  examples  here  say  for

example; X 1 X 2 X n a random sample from double exponential distribution half e to

the power minus x minus theta where x is any real number theta is any real number. In



this case if we considered the sufficiency. So, the joint distribution of X 1 X 2 X n that is

equal to 1 by 2 to the power n e to the power minus sigma modulus xi minus theta i is

equal  to  1  to  n.  Now here  you  observe  I  cannot  reduce  it  further  as  a  function  of

parameter and another variable here.

Because each of the x i’s are appearing in  the modulus sign and therefore,  I  cannot

separate it out. At the most I can consider the reduction as 1 by 2 to the power n e to the

power minus sigma modulus of xi order statistics minus theta. So, this function is now a

function of the order statistics and theta and this we can call h x. So, we conclude that the

order statistics X 1 X 2 Xn is sufficient this order statistic. Now, remember here for this

problem  what  was  the  maximum  likelihood  estimator?  The  maximum  likelihood

estimator was median of the observations.

And median is a function of this is a function of order statistics because, if we have an

odd number of observations say x 2 m plus 1 then x m plus 1 that is the middle of the

observation was the median. And, if we have an even number of observations that is x 2

m then any number between xm and x m plus 1 and we can actually consider say the

middle of the 2 that is xm plus xm plus 1 by 2 as the maximum likelihood estimator. So,

this is a function of order statistics in this case also.

So, this statement is true in general. Another thing which I just now pointed out that

many times when we are writing down the density function say in this case we are, we

have to incorporate the region of the variable which is dependent upon the parameter as a

part  of the joint  density  function.  Because,  if you do not included it  then we cannot

decide a sufficient statistic for example, if he had written only this part then, there is no

sufficient statistics here because e to the power minus sigma x i can be separately written

e to the power n theta can we separately written.

However, this is not a complete description of the density unless we include the region xi

greater than theta for all i and this is the way of including this. A similar phenomena is

observed in the uniform distributions also like in the uniform distribution the range is

dependent upon the range of the variable is dependent upon the parameter.



(Refer Slide Time: 13:43)

So,  let  us  consider  say  X  1  X  2  X  n  say  a  random sample  from uniform 0  theta

distribution. Now in this case the joint density is equal to 1 by theta to the power n. And

once again each of the xi is between 1 to n and it is equal to 0 elsewhere. So, this part we

will express as then 1 by theta to the power n I of say x n from 0 to theta and the other

xi’s are from 0 to x n for i is equal to 1 to n minus 1. So, you can see this portion we can

express as g of x n theta and this part we can write as h x.

So, X n is sufficient; however, if we consider say uniform distribution which is on a 2

sided interval here we have taken one side as 0; suppose we consider say from theta

minus say 1 by 2 2 theta plus 1 by 2. In this  case the joint  distribution is  simply 1

because, theta plus half minus theta minus half is 1. However, each of the x i’s they are

between theta plus half and theta minus half. So, this part then we can incorporate as

indicator  function  of  x  1  from theta  minus  half  to  theta  plus  half  and the  indicator

function of x n from theta minus half to theta plus half.

And the remaining order statistics line between x 1 and x n i is equal 2 to n minus 1. So,

this you can see it is a function of x 1 x n theta into h x this part is h x, this part is a h x

and this part is a function of x 1 x n and theta. So, here X 1 X n is sufficient although the

parameter remains 1 dimensional here, but the order statistics contains 2 terms. If you

remember the maximum likelihood estimator; the maximum likelihood estimator for this

problem was any value between x n minus half to x 1 plus half so, which is the function



of X 1 X n. So, the statement that the maximum likelihood estimators if they exist they

are functions of the sufficient statistics is satisfied here also. 

So, these are the topics that I will be covering in the next lecture.


