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That  we notice  when we are  proving that  t  is  equal  to  sigma xi  sufficient  in  the  2

examples  that  I  have  consider  is  that,  we  are  already  guessing  what  is  a  sufficient

statistics. Now in many given problems it may not be obvious that what is sufficient and

therefore, this definition of taking conditional distribution to prove that a given statistic

is sufficient maybe to combustion. And, moreover it may give rise to like we consider

conditional distribution of x 1 x 2 x n given say x 1 minus x 2 plus x 3 minus x 4 and so

on. 

It may turn out that this is not free, we may take sigma xi square, it may not be free from

theta. Then how to get or you can say, how to get guess an sufficient statistic. Fortunately

for this there is a important result called factorization theorem, which readily produces

the sufficient statistics. 
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So, this is known as Neyman Fisher factorization theorem, named after RA Fisher and

Jerzy  Neyman,  who proved  in  around 1939.  We are  not  going  to  give  a  very  very

rigorous statement and proof of this theorem, which will be applicable to all situations,



rather  we will  consider  a  discrete  case here and to  write  the proof  here,  for general

rigorous  statement  and  proof  see  the  book  of  say  Lehmann  and  Romano.  We are

considering a discrete case here, let X be a discrete random variable, with probability

mass function say f x theta theta belonging to discrete theta, then T X is sufficient if and

only if, f x theta is equal to g T x theta into h x for all theta. So, we are calling this as the

factorization theorem.

What I am saying is the distribution can be written as product of 2 terms, g and h, where

h is a term where parameter does not appear. In the term g, the parameters theta appears

but  appearance  of  x  is  through  T alone.  So,  if  that  is  happening  then  we  say  T is

sufficient.  So,  the  factorization  means  that  the  part  of  the  distribution  where  the

parameter is involved should involve only the sufficient statistics in the form of variables

and the other term should be free from the parameter.

Let us look at a proof of this. So, we are considered the discrete case here. So, let us

assume say f x theta is equal to g of T x theta h x. Now, let us consider say probability

that T x is equal to t; that is equal to now, this is a probability which is involving a

function  of  the  random variable  x.  So,  this  can  be  considered  as  the  sum over  the

probability mass function, over those values of x for which T x is equal to t. If I am

assuming this factorization I can write it as g of T x theta into h x, x such that T x is

equal t.

Now in the term h x this T x is equal t condition is not it is coming whereas, here T x is

equal to t will be true for all the values. So, this term can be taken out of the summation

sign, this can be written as g t theta sigma h x over x; such that, T x is equal to t. So, if I

consider probability of X is equal to say x prime given T X is equal to t; that means,

conditional distribution of X given T, this is equal to 0, if T x prime is not equal to t.

And, in other case it is equal to probability of X is equal to x prime T X is equal to T x

prime divided by probability of T X is equal to t which is actually equal to T x prime

here, because I am taking T x prime is equal to t. 

So, if you consider this now, probability X is equal to x prime T X is equal to T x prime

it is same as probability X is equal to x prime. So, this becomes equal to, let me consider

only this star portion; let me call this is a star here I will consider this portion. 
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So, this is star portion is equal to P theta X is equal to x prime divided by g t theta sigma

h x x; such that, T x is equal to t; that is equal to g t theta h x prime divided by g t theta h

x sigma x, such that T x is equal to t. Now this term cancel out. So, you look at this

conditional  distribution  of  X  given  T.  Now  this  term  is  free  from  the  parameter,

independent of theta.

So, the conditional distribution of X given t is independent of the parameter. So, T is

sufficient  by  the  definition  of  the  sufficiency. Let  us  take  the  converse  part  of  this

theorem. Let us assume that T is sufficient for theta. If we assume that t is sufficient of

theta; that means, I am saying the conditional distribution of X given T X is a function of

only x prime and t that is independent of theta. 

But this left hand side you can write as P theta X is equal to x prime T X is equal to T x

prime divided by probability T X is equal to T x prime, that is equal to c x prime t, if T x

prime is equal to t. In other case of force, it is equal to 0, so we do not write that that case

here. This means that probability of X equal to x prime is equal to c x prime t and this

term. Now what is this term? This term will be simply c x prime t g t theta because I am

taking T x prime is equal to t.

Now this is nothing, but the factorization because this term I can write as h x g t theta.

So, I have considered this discrete case here because it is easy to write this conditional

probability. If the distribution are continues then probability of T X is equal to t does not



make sense because that will be 0. So, we are use the conditional density function form.

So, the general proof which is given in the Lehmann and Romano, this takes care of all

these cases.

Another point which I would like to mention here, here I have taken theta to be a scalar,

but suppose theta is a vector here then what will be the change here? If we make this

assumption this theta will become vector, this theta will become vector here. Here also

will become a vector, this will become a vector, this will become a vector. So, there is no

change in the argument here that means, if the expectation holds t will be sufficient.

Let us look at the converse part. In the converse part, you are saying that this is free from

theta, so that I will become vector here and it will not make any difference and here we

will write it as a function of t and theta where theta is a vector parameter. So, this result

holds even if theta is a vector parameter and another thing is about T also. I am writing

here T as a one dimensional term, but that is also not must here T also can have several

components like it could be T 1, T 2, T k, similarly theta can be theta 1, theta 2, theta n.

So, the let me write this as a remark here. 
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The theorem holds if theta and T are vectors and another point is that their dimensions

need  not  be  the  same,  their  dimensions  need  not  be  same.  Now  let  us  revisit  our

statement.  I  said that  if  T is  a  function  of  U,  then U is  also sufficient.  Now in the

factorization  theorem,  if  I  substitute  t  as  function  of  U,  then  I  will  be  writing  it  is



something like h of U. If I put that thing then it will mean that U is also sufficient by the

same argument. 

So, let me add that here. If T is sufficient and T is a function; say alpha U, then let us

look at the density function, f of x theta is equal to g of T x theta into h x, this we can

write as g of. Now T it is a function of alpha U So, this we can write as g of a function of

U So, we can just alpha U we can write. So, U is also sufficient by factorization theorem;

however, if V is a function of T, then V need not be sufficient. If V is a 1 to 1 function of

T, then V is sufficient. This proof is again simple, if we say V is a 1 to 1 functions say, V

is equal to beta of T, then we can say T is equal to beta inverse of V. 

In that case g T theta you can write as g of beta inverse V theta;  that means, it  is a

function of v and theta. So, V is also sufficient. Now the definition of sufficiency can be

used to prove whether a given statistic is sufficient or not sufficient, because even find

out the conditional distribution of a given statistics and you can see whether it is free

from the parameter or not; however, you should know what statistic you are checking

whereas,  the factorization theorem yields  a sufficient  statistic  because it  is  appearing

there.

Now if you want to prove that something is not a sufficient statistic, then factorization

theorem will not be useful, because to show that it is it cannot be represented is more

difficult than saying that it is a function. So, both of the that is the original definition as

well as the factorization theorem have different uses. 
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Let me give some examples here. So, let X 1 X 2 X n follows a normal distribution with

mean mu and variance sigma square, I will consider different cases. As I mentioned to

you that the sufficiency is a property of the family of distributions, it is not a property of

a variable or a property of the parameter. It is a property which is holding for the family.

So, here we are saying mu belongs to r sigma square is positive. Let us take special

cases.

Suppose I say sigma I square is known, say sigma I square is equal to 1; that means, I am

saying X 1 X 2 X n follows normal mu 1 distribution. Now let us write down the joint

distribution of, joint distribution of X 1 X 2 X n. So, that is equal to product 1 by root 2

phi e to the power minus 1 by 2 x i minus mu square is equal to 1 to n.

So, this if you see 1 by root 2 phi to the power n, e to the power minus sigma 1 by 2 x

minus mu square. This we can write as 1 by root 2 phi to the power n, e to the power

minus sigma x i square by 2, e to the power minus n mu square by 2 plus n mu x bar,

because if I take the cross product that is twice mu xi with the minus sign.

So, 2 2 will cancel out, minus minus will become plus. So, we get mu sigma xi that I

write as n mu x bar. Now if you write this function h of x and this part we consider as a

function of x bar and mu, then it is exactly in the form of factorization theorem. We have

one term which is free from the parameter and other term which is depended up on the

parameter, depends on the variable only through x bar. So, by factorization theorem gives



x bar  as a  sufficient  statistic.  Now this family is  normal  distributions  with variances

known. So, here the sufficient statistics is x bar in a rough way we can say x bar is

sufficient for mu. 
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Let us take the second case, I take mu is known. If mu is known say mu is equal to mu

naught. In that case, the distribution of X 1 X 2 X n is normal mu naught sigma I square.

So, the joint distribution of X 1 X 2 X n will become 1 by sigma root 2 phi e to the

power minus 1 by 2 xi minus mu naught sigma I square, that is equal to 1 by root 2 phi to

the power n sigma to the power n e to the power minus. 

Now this term we write it as sigma xi minus mu naught square by twice sigma square.

Here you see I cannot separate out xi like in the case of sigma known case. So, we can

say here that sigma Xi this term I write as say h x and remaining term I write as g of

sigma xi minus mu naught square and sigma square.

So, sigma Xi minus mu naught square is sufficient for the family of normal distributions.

Now we may do this factorization in different way also. We may right here 1 by root 2

phi to the power n, sigma to the power n and as before let us expand this. So, we get

minus sigma xi square by 2 sigma i square plus mu n x bar by, so this mu is mu naught

here sigma square and e to the power minus n mu naught square by sigma twice sigma

naught square.



If you look at this breakup, then I can consider this as a function of x bar and sigma xi

square. So, we can also conclude that X bar and sigma Xi square is sufficient which is of

course true here. But, if you see this one this is a larger reduction then this because here

the  sufficient  statistic  is  two  dimensional.  Here  you  have  sufficient  statistic  as  one

dimensional and of course, you can see here that this itself is a function of sigma Xi and

sigma Xi square. Because, if I expand this I get sigma Xi square mu naught square minus

2 mu naught Xi. So, this is equal to sigma Xi square plus n mu naught square minus 2

mu naught sigma Xi, so this is actually a function of this. So, we will prefer this because

this is a higher level of data reduction because this is one dimensional,  this is a two

dimensional.

Let us take the case where both mu and sigma square are unknown. Now notice here if

both are unknown then I have to consider the joint distribution by treating both mu and

sigma square as the parameters. So, this is a two dimensional parameter case here and the

product of the individual distributions of X 1, X 2, X n it is equal to 1 by 2 sigma xi

square xi minus mu square. You expand this, this is equal to 1 by root 2 to the power n

sigma to the power n, e to the power minus n mu square by 2 sigma xi square minus

sigma xi square by twice sigma square plus n mu or you can say mu sigma xi by sigma

square.
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So, this term you can see if it is a function of this term is a function of sigma Xi, sigma xi

square and mu and sigma square and this term you can call h x. So, we conclude that

sigma Xi, sigma Xi square is sufficient. Here you can see that further reduction is not

possible; however, we can consider it in a slightly in a different way as follows. We may

write this as e to the power minus 1 by twice square sigma xi minus x bar whole square

minus  n  by  2  sigma square  x  bar  minus  mu square;  that  means,  I  have  added  and

subtracted x bar term here. 

In that case this is actually sigma xi whole square this is x bar. So, we can conclude that

X bar and s square, where we have used earlier the notation s square for 1 by n minus 1

sigma Xi minus X bar whole square that is the sample variance, so this is sufficient. Now

you see there is no difference in this statement, if I considered x sigma Xi and Xi square

then this is 1 to 1 function of X bar S square because, from here I can obtain this and

from here I can obtain this.

So, we can say that when the both parameters in a normal distribution are unknown, then

the sample mean and the sample variance are sufficient. Now many times we are using it

as a misnomer that, expiry sufficient for mu and S square is sufficient for sigma square.
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Actually we have to say this is sufficient for the family normal mu sigma square, mu

belonging to r and sigma square greater than 0. I will just explain this discrepancy may

occur if we do not maintain this family here. 
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For example I take another case say sigma is equal to sigma square is equal to sigma is

equal to say sigma is equal to mu, then what happens to the density, it is the distribution

is normal mu mu square. If I have this then you can look at this breakup here, that joint

density although it is a function of x and mu alone because sigma is vanishes here. This

is equal to 1 by root 2 phi to the power n, mu to the power n, e to the power minus n by 2

minus sigma xi square by twice mu square minus mu sigma xi square by mu square that

is mu.

So, here you see this is a function of sigma xi, sigma xi square and mu. Although the

parameter is one dimensional, the sufficient statistics is two dimensional. So, although

parameter  is  one dimensional,  sigma Xi sigma Xi square is  sufficient.  So,  again the

statement is again the same, that is sigma Xi sigma Xi square is sufficient for this family

normal mu mu square; of course, mu is greater than 0 here.

So, sufficiency is a property of the family of distributions. In the next lecture we will

consider few more examples that is how to apply the factorization theorem to derive the

various sufficient statistics. And, we will look at the maximal data reduction by means of

sufficiency that is the concept of minimal sufficient statistics. 

So, in the next lecture will be considering these concepts.


