
Statistical Inference
Prof. Somesh Kumar

Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture – 21
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In  the  previous  lecture  we  have  discussed  the  lower  bound  for  the  variance  of  an

unbiased estimator when certain regularity conditions are satisfied. The first one assumed

first order derivatives. And therefore, we had the Frechet Rao Cremer lower bound and

when we assume higher  order derivatives  existing then we had Bhattacharya’s lower

bound for the variance. We have seen that Bhattacharya’s lower bound is a sharper lower

bound.

However, it is not very frequently used because the calculations involved to calculate the

Bhattacharya’s  lower  bound  are  quite  involved  and  higher  order  movements  are

frequently used. And therefore, it  becomes difficult to use that. Now there are certain

densities  for  example,  uniform  distribution,  exponential  distribution  with  a  location

parameter Pareto distribution etcetera where the regulatory conditions are not satisfied.

In fact, you can notice that many of these densities are the ones where the range of the

variable and the parameter is mixed up for example, in the uniform distribution x lies

between 0 to theta. If you consider say exponential distribution then x is greater than

theta.
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Now, in these cases I mentioned yesterday that we have another inequality that is called

Chapman Robbins Kiefer inequality and let me repeat the statement once again.

So, as usual we have a probability density or probability mass function denoted by f X

theta,  where  theta  belongs  to  omega.  Now, consider  any  unbiased  estimator  of  the

parametric function g theta, we defined the ratio of the densities f X phi by f X theta at

two parameter points phi and theta. Now this ratio should be well defined. That means

the  set  of  values  where  the  numerator  is  positive  and  the  set  of  values  where  the

numerator is positive.

So, the numerator should be positive more often. So, we have this that the set of x such

that f X phi is greater than 0 is a subset of the set of values x for which f x theta is

positive. Now for this ratio we consider the variance when the two density is f X theta

and we denoted by A phi theta. Then the Chapman Robbins Kiefer inequality says that

variance of unbiased estimator T will be greater than or equal to supremum value of g

phi minus g theta a square divided by A phi theta where the supremum o is taken over

phi for which this condition is satisfied.

Let us look at the proof of this now.
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Let us write g phi minus g theta. Now this is equal to expectation of T X at phi minus

expectation  of  T X at  theta.  So,  that  is  equal  to;  now we are  assuming the  density

function or the mass function as f X theta. So, if I make use of the generalized Lebesgue

integral then this can be written as T x f x phi. So, let me use multi observations that is x

1 x 2 x n.

So, we are denoting it by x minus f x theta d mu x. Now this one we write as integral T x

f  x  phi  minus  f  x  theta  divided by f  x  theta  into  f  x  theta.  So,  if  you look at  this

expression here we have the density and then there is a function here. So, this can be

considered as expectation of T X into f X phi by f X theta minus 1. Now this is the

expectation when the true density is theta,  because here the density function that has

been taken is f x theta.

So this, we can write as, now again observe something for example, expectation of f X

phi by f X theta, what it is? With respect to theta, that is equal to integral f x phi by f x

theta into f x theta d mu x, now this cancels out. So, this becomes integral of the density,

this  is  equal to  1; that  means,  expectation  of this  term is  equal  to 0.  Now if  I  have

expectation of product of two expressions and expectation of one of them is 0 then this is

nothing, but the covariance between T and f X phi by f X theta.

Therefore we can say that g phi minus g theta a square that is equal to covariance a

square of T and f X phi by f X theta at this point I apply the Cauchy Schwarz inequality.



So, covariance square is less than or equal to variance of T into variance of f X phi by f

X theta, remember the notation here, variance of f X phi by f X theta had denoted by A

phi theta. So, this is equal to variance of theta into A phi theta. So, what we are getting? g

phi minus g theta a square is less than or equal to variance T into A phi theta.

So, we can write variance of T is greater than or equal to g phi minus g theta a square

divided by A phi theta.
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Now, the left hand side is free from phi the left hand side is dependent only on theta and

the right hand side is dependent upon phi and theta both. So, on the right hand side if I

take expectation, the maximum over all phi then also this inequality will be true. 

Now, when I say supremum over all phi or maximum over all phi then what are the

phi’s? The phis are the ones which satisfy this condition a star.
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So, we have then this that taking the supremum on the right hand side with respect to phi,

subject to condition a star we get variance of T greater than or equal to supremum of phi.

And let me write here phi satisfy a belonging to omega g phi minus g theta whole square

by A phi theta. So, we have proved the Chapman Robbins Kiefer inequality which we

call in abbreviated form as CRK inequality. Let me give example of application of CRK

inequality when the regularity conditions are not satisfied. So, let us take say x following

uniform distribution on the interval 0 to theta. So, we consider say unbiased estimation

of theta.

Now, here we know that the density function is of the form 1 by theta 0 less than x less

than theta and it is equal to 0 elsewhere. If I write at another parameter point say f x phi

then it is equal to 1 by phi 0 less than x less than phi and 0 elsewhere. So, if we consider

the ratio f x phi by f x theta then that will be equal to 1 by phi divided by 1 by theta in

this region.

That means it will become theta by phi when we are having phi less than theta and x is

less than phi and if phi is less than x less than theta then this will become 0. Now the

case when both are 0 we are not considering that thing in. In fact, we can consider the

ratio to be 0 by default or by convention in that case, because there this ratio will not be

defined there.



So, now once we have the expression for this we can calculate the expectation and the

variance of this term. So, for example, expectation of f X phi by f X theta when theta is

the distribution so you are getting it as equal to theta by phi integral. Now you have to

consider the range of x from 0 to phi here and the density is 1 by theta, because although

the density is 1 by theta, but the range of x cannot be 0 to theta, because phi is less than

theta here and x is less than phi. So, the range is only this. So, here theta cancels out and

you get this value simply as 1.
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Similarly, if I consider expectation of f x phi by f x theta whole square then this will

become 0 to phi theta a square by phi square 1 by theta d theta. So, this is simply theta by

phi; that means, a phi theta that is the variance of f x phi by f x theta that will be equal to

theta by phi minus 1, this is the variance when the true distribution has been assumed to

be theta.

Let us revisit the calculations, we are writing down the distribution at two parameter

points theta and phi and then I write down the ratio f x phi by f x theta. Now notice here

there is one case when both of them are positive, if both of them are positive then the

ratio will be theta by phi.

Now, that is going to be true when x is less than phi less than theta and of course, it will

also be true for x less than theta less than phi, but in that case then we have to also take

up that the density in the denominator may become 0. So, we will not take that case, it is



equal  to  0  when  x  is  between  phi  and  theta.  Therefore,  when  you  consider  the

expectation it is theta by phi over this region only that is 0 to phi and when we integrate

we get 1.

In a likewise manner the expectation of f X phi by f X theta is square can be calculated

and we get the term as theta square by phi square 1 by theta integral of this quantity from

0 to phi, with respect to. So, this is not with respect to theta it is with respect to x here.

So,  this  value  turns  out  to  be  simply  theta  by  phi,  and  therefore  the  variance  is

expectation of a square minus expectation whole square that is theta by phi minus 1.

Now let us consider the CRK inequality.
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So, for CRK inequality we need g theta g phi. So, here g theta is theta itself. So, if we

consider the term g phi minus g theta whole square divided by a phi theta, then that is

equal to phi minus theta square divided by theta minus phi into phi. Now in this theta

minus phi term will cancel out. So, you get phi into theta minus phi. Now in order to find

out  the supremum with respect  to  phi  such that  the condition is  star  is  satisfied,  we

should have phi less than or equal to theta. So, we find supremum of this quantity such

that phi is less than theta.

So, now this is a simple function here, if you differentiate we will get theta minus 2 phi,

and that if you put equal to 0 you will get phi is equal to theta by 2. So, that is equal to

theta by 2 into theta minus theta by 2 that is equal to theta square by 4 this is attained at



phi is equal to theta by 2. Therefore, CRK lower bound is theta square by 4. So, we have

seen here that even if the FRCLB is not available that is Frechet Rao Cramer Lower

Bound is not available  we can find out lower bound for the variance of an unbiased

estimator.

In the case of uniform distribution  for example,  we know for example,  2 X we can

consider then expectation of 2 X is equal to theta. So, this is an unbiased estimator what

is variance of 2 X, variance of 2 X is equal to 4 times variance of x that is equal to 4

times theta square by 12 that is theta square by 3. Of course, you can see that this is

greater  than theta  square by 4,  we can actually  show later  on that  2 X is  minimum

variance unbiased estimator in this problem. We can show it directly also and we will

later on use a concept of sufficiency and completeness from there also we will show this

thing.

Let us consider another example of non regular distribution, say exponential distribution

with a location parameter e to the power theta minus x where x is greater than theta it is

0, for x less than or equal to theta. So, here we want the CRK lower bound for unbiased

estimator of theta. So, let us consider f x phi here, f x phi will becoming e to the power

phi minus x for x greater than phi and 0 for x less than or equal to phi 
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So, once again we consider the ratio f x phi by f x theta; consider the ratio f x phi by f x

theta that will be equal to.



Now, e to the power phi minus x divided by e to the power theta minus x; so e to the

power minus x will cancel out. And we are left with the term e to the power phi minus

theta for x greater than phi greater than theta. And it is equal to 0 for phi less than x

greater than x greater than theta, we are not considering the case phi less than theta here

because in that case there will be a place where you will have 0 in the denominator. So,

we are not considering that case here.

So, expectation of f x phi divided by f x theta when theta is the true parameter value it is

equal to e to the power phi minus theta e to the power theta minus x d x from phi to

infinity. That is equal to, now if you look at this theta cancels out you get density e to the

power phi minus x from phi to infinity. So, the value of integral will be equal to 1;

similarly, if we consider the expectation of f x phi by f x theta a square that is equal to

integral phi to infinity e to the power twice phi minus twice theta.

E to the power theta minus x d x that is equal to e the power phi minus theta so A phi

theta that is variance of f X phi by f X theta that is equal to e to the power phi minus

theta minus 1. Therefore, the Chapman Robbins Kiefer lower bound for the variance of

unbiased estimator of theta is supremum of phi minus theta square divided by e to the

power phi minus theta minus 1, where phi is greater than theta.
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Now, if  phi is greater  than theta  basically  it  means we can consider it  as a problem

supremum say t greater than 0, t square by e to the power t minus 1, because phi minus



theta is positive.  So, I can replace it  by t,  now you can notice that this  is a positive

function we can also notice here that.
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Let me call this as say h t, then you can notice here that limit of h t as t tends to 0 that is,

now if you look at this term here this is 0 by 0 form as t tends to 0.

So, we can apply L Hospital’s rule. So, you will get limit 2 T by e to the power t s t tends

to 0 which is again 0 by 0 form. So, we can further take 2 by e to the power, now this is

not 0 by 0 form this is actually 0. Similarly if I consider limit of h t s t tends to infinity

that is equal to limit as t tends to infinity to t by e to the power t. That is equal to limit as

t tends to infinity of 2 by e to the power t that is equal to 0.

So, as t tends to 0 or t tends to infinity, the function h t tends to this function ht tends to

0. Now let us consider the derivative g prime t that is equal to t times 2 minus t e to the

power t minus 2 divided by e to the power t minus 1 square. This is less than 0 for t

greater than or equal to 2 and it is greater than 0 for t less than or equal to 1. Actually we

can show that g prime t has a change of sign between 1 and 2.

So, you can numerically solve this equal to 0. So, we numerically solve this 2 minus t e

to the power t is equal to 2 to get t as approximately 1.59362, at this point h t function

sorry this is I was writing h. So, this is will be h prime t and this will also be h prime t.

So, h t value will be equal to 0.6476 that is CRK lower bound is 0.6476.



Let us consider say unbiased estimator here. In this case an unbiased estimator for theta

is in the exponential distribution; if I take the mean here mean of this distribution is 1

plus theta that is expectation X is equal to 1 plus theta. Therefore, expectation of x minus

1 will be equal to theta. So, an unbiased estimator will be equal to X minus 1, what is

variance of this? That is variance of X that is equal to again same 1 it is of course, bigger

than the CRK lower bound here.
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So, here we are able to obtain a non trivial lower bound for the variance of an unbiased

estimator and in this problem we are showing that it is not attend here. In fact, we can

show that x minus 1 is minimum variance unbiased estimator by a direct argument, that

we will take up little later.

Now, in these two examples that I have given here the regularity conditions which are

mentioned in the Frechet Rao Cramer lower bound or the Bhattacharya lower bound they

were  not  satisfied.  Now there  is  an  interesting  question  that  if  those  conditions  are

satisfied and we find FRC lower bound as well as CRK lower bound, then which one

will be sharper? The answer is interesting here I will show it through one example.
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Here both FRC and CRK lower bounds can be found.

Let  me  take  a  simple  case  normal  distribution  with  mean  theta  and  variance  unity,

suppose we have an observation X from this distribution. In general we have calculated

that if X follows normal mu sigma square, the FRC lower bound was sigma a square by

N. Now if sigma a square I have taken to be 1 then it will become 1 by N, now that is

when we have N observations X 1 X 2 X N here we have only one observation. So, it

will become simply 1. So, in this case FRC lower bound for estimating theta is 1 and of

course, you had expectation X is equal to theta and variance of X is equal 1.

So, it is attained, let us calculate the CRK lower bound here. So, if you want to calculate

the CRK lower bound we need to write down the density 1 by root 2 pi e to the power

minus half x minus theta a square. We also write this density at another point x phi 1 by

root 2 pi e to the power minus 1 by 2 x minus phi a square, notice here that these are

defined for all x, x is on the real line here also x is on the real line. So, there is no

problem in taking the ratio for all the real values.

So, when I write down the ratio here e to the power minus x square by 1 term cancels out

and I will be left with e to the power theta a square minus phi square by 2 into e to the

power phi minus theta x. This is valid for all x therefore, when I calculate the expectation

when the true density is  theta  this  is  equal  to expectation  of theta  square minus phi

square by 2.



Expectation of e to the power phi minus theta into X, now this is when the density of X

is normal theta 1, now you look at this expression carefully. It is of the form expectation

of e to the power t  X that  is  the moment generating function of the normal theta  1

distribution. Now we know that if I have a normal mu sigma a square distribution then

the moment generating function at the point t that is given by e to the power mu t plus

half sigma a square t square.

So, in that one we substitute t is equal to phi minus theta and sigma square is equal to 1

and mu is equal to theta. So, this is nothing, but e to the power theta a square minus phi

square by 2 into the moment generating function of x at the point phi minus 2 where x

follows normal theta 1. So, this value turns out to be e to the power theta square minus

phi square by 2 and e to the power phi minus theta into theta plus half phi minus theta

whole square.

(Refer Slide Time: 29:57)

In a similar way we can calculate the expectation of expectation of f X phi by f X theta

whole square.
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So, this will become equal to expectation of this square, now if I square a I get here e to

the power theta square minus phi square which is a constant term. So, it will come out of

the expectation sign and then I will get expectation of e to the power twice phi minus

theta  x.  So,  this  is  equal  to  e  to  the  power  theta  a  square  minus  phi  square  into

expectation of e to the power twice phi minus theta into x. So, this is nothing, but again

of the form of the moment generating function of x at the point twice phi minus theta.

So, this is equal to moment generating function of x at the point twice phi minus theta,

where X is a normal theta 1 random variable.

So, we substitute in the formula for the moment generating function and we get it as e to

the power twice phi minus theta into theta plus twice phi minus theta whole square. So,

naturally now the variance that is A phi theta term is equal to e to the power. So, this term

minus a square of this term if I square rate this I get e to the power theta square minus

phi square which is the same term here. Similarly here I have e to the power twice phi

minus theta into theta and here if I square it I get e to the power phi minus theta theta

twice.

So, these terms can be taken out and if you take it out what you get here, twice phi theta

minus twice theta a square plus theta a square that cancels out minus phi square and if

you look at this term here, here I can take come phi minus theta whole square out. So,

phi square will come here which will cancell  with this and then you get plus theta a



square which will again cancel plus theta a square minus twice theta a square plus theta a

square. So, all of these terms get cancelled out, you get minus twice phi theta plus twice

phi theta.

So, you are left with only e to the power phi minus theta a square minus 1. Now the CRK

lower bound is equal to supremum of phi, supremum over phi phi minus theta a square

divided by e to the power phi minus theta a square minus 1 this you can simply write

something like t. So, it is equal to supremum e to the power t square divided by e to the

power t square minus 1 where t is an. Now the analysis of maximization of this is simple

in fact, this is a positive term and you can easily show that the maximum is attained at t

is equal to 0.

Now, at t is equal to 0 this is having 0 by 0 form. So, you take the limit, this is attained as

t tends to 0. Now you notice here in this particular problem the Frechet Rao Cramer

lower bound was 1, the variance of the unbiased estimator X was 1 and the Chapman

Robbins Kiefer lower bound is also equal to 1. So, in general we cannot say that CRK

bound is worse because it does not take care of the regularity conditions.  So, in this

particular case for example, we get exactly the same.


