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Let me explain through an example here.
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We consider our example of the geometric distribution that is P theta X is equal to x is

equal to theta into 1 minus theta to the power x for x is equal to 0, 1, 2 and so on. In fact,

for  this  problem  we  have  already  shown  that  an  unbiased  estimator  for  unbiased

estimator for theta is T given by that T 0 is 1 and T k is equal to 0 for k equal to 1 2 and

so on. In fact, this is the only unbiased estimator a unique unbiased estimator.

And we have already seen that variance of T is theta into 1 minus theta and the FRC

lower  bound  was  equal  to  theta  square  into  1  minus  theta.  Now  let  us  apply

Bhattacharyya’s bound here. So, let us calculate here f x theta is equal to theta into 1

minus theta to the power x. So, del f x theta by del theta, that is equal to 1 minus theta to

the power x plus x into 1 minus theta to the power x minus 1 with a minus sign.

So, S 1 is del f x theta by del theta divided by f x theta that will be equal to 1 by theta

minus x by 1 minus theta to the power x minus 1 divided by this term. So, we will get it



as theta into 1 minus theta to the power x. So, I am sorry this is theta here. So, I will get

here x by 1 minus theta. Similarly, if we consider say second derivative here del 2 f by

del theta 2, we get here x into 1 minus theta to the power x minus 1 minus x into 1 minus

theta to the power x minus 1 minus plus x into x minus 1 theta into 1 minus theta to the

power x minus 2.

These 2 terms can be combined. So, S 2 that is del 2 f by del theta 2 by f x theta, that

becomes minus 2 x by theta into 1 minus theta plus x into x minus 1 1 minus theta

square. Now for this geometric distribution, if I want to calculate variance covariance

matrix  of  S  1  then  I  need  various  expectations.  So,  let  us  see  in  fact,  I  will  need

expectation of x expectation of x square and if here I need expectation x expectation x

square and expectation x cube and expectation x to the power 4 also.

So, let us see for this geometric distribution, you will have expectation X is equal to 1

minus theta by theta expectation of X square that is equal to 1 minus theta plus 1 minus

theta square divided by theta square. Expectation of X cube is equal to 1 minus theta plus

4 into 1 minus theta square plus 1 minus theta cube divided by theta cube. Expectation of

X to the power 4 that is equal to 1 minus theta plus 11 1 minus theta square plus 11 1

minus theta cube plus 1 minus theta to the power 4 divided by theta to the power 4.
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So, if we use these expectations we can easily write down expectation of S square that is

variance of S 1 as 1 by theta S square into 1 minus theta. Expectation of S 2 square that



is variance of S 2 that is equal to 4 into 2 minus theta divided by theta to the power 4 into

1 minus theta square.

We also need the covariance between S 1 S 2 that is expectation of S 1 S 2, because

expectation S 1 and expectation S 2 are 0, this is equal to minus 2 divided by theta cube

into 1 minus theta. Therefore, the variance covariance matrix of S is equal to S 1. So,

here we are going only up to second stage, that is lambda 1 by theta square into 1 minus

theta minus 2 by theta cube into 1 minus theta and 4 into 2 minus theta divided by theta

to the power 4 into 1 minus theta square.

Now, the inverse of this can be written easily, if you look at the determinant of this, it is 4

divided by theta to the power 6 into 1 minus theta cube. And, the inverse is then simply

obtained as 2 minus theta theta square into 1 minus theta theta cube 1 minus theta square

by 2 theta cube into 1 minus theta square by 2 theta to the power 4 into 1 minus theta

square by 4. We also look at what is eta? Eta 1 is dg by d theta that is 1, eta 2 will

become d 2 g by d theta 2 that is equal to 0.

So, your eta vector is 1 0. So, Bhattacharyya’s bound for estimating theta unbiasedly is I

will call  it  BLB Bhattacharyya lower bound or say Bh LB that is equal to eta prime

lambda inverse eta. Since, eta is 1 0 so, you will get actually the first term that is theta

square into 1 minus theta into 2 minus theta. What was FRC lower bound here? That was

theta square into 1 minus theta that is expectation of 1 by S 1 square layer. And what is

variance of t?

Variance of the unbiased estimator t that was theta into 1 minus theta; so, it is greater

than Bhattacharyya lower bound and that is greater than FRC lower bound, for theta

lying  between  0  and  1.  Now, what  you  observe  here  is  that  although,  this  unique

unbiased estimator t. So therefore, it is based unbiased estimator, it does not achieve the

Bhattacharyya lower bound, but Bhattacharyya lower bound is  sharper than the FRC

lower  bound.  So,  in  that  sense  this  is  an  improvement  over  the  FRC lower  bound

although, we are making an assumption about the differentiation of the density function a

higher number of times.
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So,  let  me  give  a  few  comments  here  about  Bhattacharyya’s  bound  equality  in

Bhattacharyya’s bound is attained, if and only if T is linearly related with S 1 S 2 Sk.

Now why is this? Because actually, we are using that the multiple correlation coefficient

is less than or equal to 1. So, multiple correlation coefficient is equal to 1 provided the

dependent variable and the independent variables are completely linearly related.

So,  that  is  the  condition  here  because,  we  are  considering  the  multiple  correlation

between T and S here. So, they must be linearly related with probability 1, then we have

observed that  Bhattacharyya’s bound is  sharper than the Rao Crammer lower bound,

why? Because the Bhattacharyya bound is using multiple correlation coefficient between

t and S 1 S 2 Sk and Fresher Rao Cramer lower bound has only the correlation between t

and S 1. So, certainly this multiple correlation coefficient will be higher than that. 

So, we can say in general that Bhattacharyya’s bound is sharper than FRC lower bound,

since  multiple  correlation  coefficient  between  T and S  1  S 2 S k is  larger  than  the

correlation between T and S 1 another thing that you observe here, I have to consider

derivative  up  to  order  k  suppose,  I  consider  up  to  order  k  plus  1  in  that  case,  the

inequality will be dependent upon the multiple correlation between T and S 1 S 2 S k

plus 1.

Now,  if  you  increase  the  number  of  variables,  the  multiple  correlation  coefficient

increases; that means, the Bhattacharyya bounds gets sharper and sharper as k increases.



So, we can say that Bhattacharyya’s bound gets sharper than sharper as k increases, this

is because the multiple correlation coefficient between T and S 1 S 2 S k plus 1 is larger

than the multiple correlation coefficient between T and S 1 S 2 S k.

Now, you can see the historical development the Fresher Rao Creamer lower bound was

obtained  in  1943,  44,  45  and  it  was  dependent  upon  one  derivative  or  first  order

derivative; however, this Bhattacharyya bond, which was developed immediately after

that  it  is sharper it  in uses higher order derivatives.  Now theoretically  speaking, this

should be used more often; however, it is not very popular or you can say not frequently

used.

The main reason is that the calculations become very very complicated, if we use higher

order derivatives, I have shown the example of second order here. So, if we are using the

second order we are actually making use of the expectation x to the power 4 that is the

fourth order moment. Now, if you consider distributions like normal distribution etcetera

where, already x square comes. So, if you consider the second order derivative you will

get power 4, now if you take the variance of that you will get expectation of x to the

power 8 kind of term. And therefore, if I go to third order or fourth order the number of

terms will be formidable. 

And therefore, even though you get sharpness and the method of Bhattacharyya bound

has not been used much for finding out the lower bounds for the variance of unbiased

estimators. I will just consider one example here, let us take say normal distribution and I

will  show that  how the  calculations  become  complicated.  Although,  Bhattacharyya’s

bound is sharper the use of it is limited due to complications in evaluation of the bound,

which involves higher order moments quite frequently, let me give an example of this.
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Say x 1 x 2 xn follow normal mu sigma square. So, here the density function is 1 by

sigma root 2 pi e to the power minus x minus mu square by 2 sigma square, we are

considering sigma here. So, the derivative of this with respect to sigma del f over del

sigma square. So, that will involve derivative of this that will be e to the power minus x

minus mu whole square by 2 sigma square and of course,  1 by sigma root 2 pi and

derivative of this term that is x minus mu whole square by 2 sigma to the power 4. Now

we consider derivative of this, now this term we will consider as sigma square to the

power half. So, the derivative of that will become minus 1 by 2 sigma square to the

power 3 by 2 and then you have root 2 pi e to the power minus x minus mu square by 2

sigma square.

Now, you can see this is S 1 term itself will be equal to x minus mu square by 2 sigma to

the power 4 minus 1 by 2 sigma cube root 2 pi. Now this term of course, will cancel out.

So, you will get sigma square here that is 1 by 2 sigma square x minus mu by sigma

whole square minus 1. Now, if I want to calculate expectation of S 1 square that will

involve fourth order moment here of course, you may take help of the calculation that x

minus mu by sigma that follows normal 0 1. So, x minus mu by sigma whole square let

me call it W, that follows chi square on 1 degree of freedom.

So, expectation of S 1 square can be written as 1 by 4 sigma to the power 4 expectation

of W minus 1 whole square. So, if W is chi square 1 expectation of W is 1. So, this is



variance term. So, that becomes 2 by 4 sigma to the power 4 that is 1 by 2 sigma to the

power 4. Now, if we I calculate S 2 S 2 will involve the second derivative here. So, if we

consider the second derivative of this then, this density multiplied by this term, you are

differentiate and then the differentiate the density also. So, you will get the terms like

this, del 2 f by del sigma square square that is equal to 1 by 2 sigma to the power 4 minus

x minus mu square by sigma to the power 6 into the density plus 1 by 2 sigma square x

minus mu by sigma whole square minus 1 whole square into the density.

So, your S 2 then turns out to be we can write using this W term as follows 1 by 4 sigma

to the power 4 W square minus 6 W plus 3. Naturally, you can see that expectation of S 2

square even will involve expectation of W to the power 4 and these terms, you can see

here expectation of W is 1, expectation of w square is 3, expectation of W cube that turns

out to be 45 by 4, expectation of W to the power 4 turns out to be 105 by 2. So, you can

calculate expectation of S 2 square as 1 by 16 sigma to the power 8, expectation of W

square minus 6 W plus 3 whole square, which is 33 by 32 sigma to the power 8.

So, you can see here the terms become complicated increasingly as we increase the order

of derivatives in the Bhattacharyya’s bound here, we have considered only second order,

if  we take  third  order  and  so  on,  it  will  be  very  very  combustion  calculations.  So,

therefore, the use of Bhattacharya bounds is restricted. Now I mentioned about two other

things, one is the case of multi parameter situation, what happens to the lower bounds in

that  case.  And,  another  is  that  what  if  the  lower  bounds  are  not  there,  sorry  if  the

regularity conditions are not satisfied then what happens to the lower bounds.
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So, we consider the case when the regularity conditions may not be satisfied. So, we

have the so called Chapman Robbins and Kiefer inequality are lower bound for variance

of an unbiased estimator. So, this is developed by D G Chapman Robbins and Kiefer. So,

let X have the probability density function or probability mass function fx, I am already

writing  for  sample  here,  where  theta  is  belonging  to  omega,  let  T  be  an  unbiased

estimator of g theta and define a term like A phi theta. This is defined to be variance

under the true distribution fx theta of f x phi divided by f x theta;  that means, I am

considering the joint distribution at the parameter point phi. 

And the joint distribution at the point theta, let us consider the ratio and the variance of

this is considered when the true distribution is fx theta. Obviously, when we write this

ratio, we should have certain conditions for example, I should not have the case, when fx

theta is 0 and fx y is nonzero, because then this will give me an infinite term; that means,

the set of values for which the density function fx phi is positive, should be a subset of

the set of points for which fx theta is positive. So, we should say here phi not equal to

theta and the set x such that fx phi is positive is a subset of the set such that f x theta is

positive.

Now, then CRK that is Chapman Robins Kiefer inequality, it states that variance of T is

greater than or equal to Supremum of g phi minus g theta whole square divided by a phi

theta. Now the Supremum is considered over all phi belonging to omega, let me call this



condition as star, where the Supremum is taken over all phi for which the condition a star

holds. So, this Chapman Robins Kiefer inequality  this gives the lower bound for the

variance of an unbiased estimator of a parametric function g theta.  But, we have not

placed  any  condition  on  the  density  function  like  in  the  case  of  Rao  Cramer  or

Bhattacharyya’s bound, we have placed conditions on the existence of the derivatives

existence of the derivatives of the integrals etcetera.

Here, there is no such condition, the proof of this we will be considering in the following

lecture. And, you will again see that the proof is dependent upon the variance covariance

inequality or you can say Cauchy Schwarz inequality that is the correlation coefficient is

less than or equal to 1. So, in the next lecture we will be proving this CRK inequality. 


