
Statistical Inference
Prof. Somesh Kumar

Department of Mathematics
Indian Institutes of Technology, Kharagpur

Lecture – 18
Lower Bounds for Variance – IV

We have discussed the concept of minimum variance; that means, I am among unbiased

estimators the estimator which has the minimum variance is some considered to be the

best. In general, we can always compare two unbiased estimators by comparing their

variances. That means, the one which has the smaller variance will be considered to be

more stable or better. So, there is a classical concept of efficiency of estimators based on

this. Let me discuss that here efficiency of estimators.
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So, let T 1 and T 2 be two unbiased estimators of a parameter say g theta. And let us

assume that they have the finite second moment, this condition is required because the

variance must exist. So, we define the efficiency of T 2 relative to T 1 by so, we use a

notation e f T 2 given T 1 it is equal to variance of T 2 divided by variance of T 1. 

Naturally,  if  the  variances  are  equal  then  the  efficiency  will  be  equal  to  1.  If  the

efficiency is less than 1; that means, variance of T 2 is less than variance of T 1; that

means, T 2 is more efficient than T 1. Conversely if the efficiency is more than 1 then

variance of T 2 will become bigger than variance of T 1; that means, T 1 is better than T



2. So, we say that T 2 is more efficient than T 1 if efficiency function is less than 1. Now,

this is regarding any two estimators. Now, in general give an any unbiased estimator we

can consider its efficiency with respect to the Rao Cramer lower bound.

So, for example, we may consider an estimator which attains the FRC lower bound if

that is so, then that is a benchmark or you can say the best thing. So, anything which is

bigger than that its  efficiency will  be considered with respect to that;  that means,  its

efficiency will be bigger than 1. So, we can also define the efficiency of an unbiased

estimator with respect to the FRC lower bound that is, we may say let me give another

notation we will call it E notation.

So, efficiency of an unbiased estimator E f efficiency of an estimator T we define as

variance of T divided by FRC lower bound for the variance of an unbiased estimator for

that parameter. Suddenly, we know that sometimes this may be attained sometimes this

may not  be  attained.  So,  these  definitions  are  not  full-proof  another  thing  is  that  in

certain cases we may not consider unbiased estimators.  Because, if we consider only

mean squared error as a criteria it may turn out that the mean squared error is less than

the variance by combining certain terms.

We can also consider that although this may not be attained, but asymptotically it may be

attained. So, we can give a definition that if limit of this is equal to 1, then we say that T

is asymptotically efficient. So, here if 1 is attained, T is the most efficient. Let us look at

some examples here.
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Let us go back to the Poisson example and for convenience let me restrict attention to 1

observation suppose, X follows Poisson lambda. And here, our parameter of interest is

say probability X is equal to 0 that is e power minus lambda. Of course, we may ask the

question that why we are considering this function.

Now, usually a Poisson distribution is the distribution of the number of arrivals, number

of occurrences, during a given time interval or during a given area or during a given

space etcetera. Now, what happens for example, if you are considering a q service q then

how many people are arriving that will denote the number X. Then certainly it  is of

interest to know that if X is equal to 0; that means, there is a slack period. Because, if in

a service q it may happen that we have to imply service personnel; that means, the person

who will be giving the service.

For example, it is a railway ticket counter, it is a ticket counter at a cinema hall or it is a

it is a service counter at a popular say cafe. So, therefore, persons are required there are

person all are required. In the when there are no person; that means, when X is equal to 0

we need not deploy the people or we may deploy less number of people. So, certainly in

such cases it is of interest to know or estimate the probability of 0 occurrence.

So, this gives us this parametric function e to the power minus lambda suddenly it is a

non-linear function of lambda therefore, the variance of an unbiased estimator of e to the

power minus lambda can never attain the lower bound. Let us look at this what will be



the lower bound? FRC lower bound for e to the power minus lambda that is equal to g

prime lambda square into the FRC for lambda. For lambda it is lambda by n and if n is

equal to 1 this is simply lambda.

The derivative of g lambda is e to the power minus lambda with a minus sign when we

squared it we get e to the power minus 2 lambda. So, this is lambda this is a lower

bound. Now, let us consider an estimator say beta X is equal to 1 if X is equal to 0 it is

equal to 0 if X is equal to 1 2 and so on. Then, if you look at expectation of beta X that is

equal to 1 into probability X equal to 0 plus 0 into probability is equal to X is equal to

say i i is equal to 1 to infinity. So, this becomes 0. So, this is e to the power minus

lambda.

So,  beta  X is  unbiased  for  e  to  the  power  minus  lambda.  However,  if  you look  at

expectation beta square, now this will again be same and therefore, variance of beta that

is also e to the power minus lambda minus e to the power minus 2 lambda. Now, if you

compare this with the lower bound e to the power minus lambda minus e to the power

minus 2 lambda greater than lambda e to the power minus 2 lambda. Because, this is

equivalent  to e  to the power lambda greater  than 1 plus lambda for lambda positive

which is always true. So, you can see that this lower bound is not attained. 

(Refer Slide Time: 09:57)

However, we can use another argument to actually prove that beta X is we can actually

show that beta is the only unbiased estimator. We can proceed by the basic principles let



us consider say alpha X let alpha X be an unbiased estimator of e to the power minus

lambda. Then we should have expectation of alpha X equal to e to the power minus

lambda. 

Now, let us write down this relation alpha x e to the power minus lambda lambda to the

power x by x factorial is equal to e to the power minus lambda for all lambda. Now, this

e to the power minus lambda you can remove from both the sides because this  is  a

positive term. So, this is reducing to then alpha 0 plus alpha 1 into lambda plus alpha 2

into lambda square by 2 factorial and so on is equal to 1. So, left hand side is a power

series in lambda and right hand side is simply a constant. 

So, this is true if and only if the coefficients match; that means, alpha zero must be 1 and

alpha 1 alpha 2 and so on all of them must be 0 which is the same as the function beta

because beta 1 beta 0 was 1 and beta 1 beta 2 and so on all of them were 0. So, this alpha

function and beta functions are the same. So, beta must be UMVUE. So, although here

the lower bound is not attained, but actually beta will be the most efficient estimator

here. Let me give an example of comparing two unbiased estimators with respect to their

variances.
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The estimators may both may be unbiased, both may be consistent etcetera. So, let us

take another example. I am not taking any distributional form let us consider say X 1 X 2



X n be independent and identically distributed random variables with say mean mu and

variance sigma square; obviously, we are assuming that variance is finite here. 

Now, you consider 2 unbiased estimators here let me take say T 1 is equal to X bar and T

2 is equal to 2 by n into n plus 1 sigma i X i i is equal to 1 to n. Now obviously, if you

look at  expectation  of  T 1 this  we have  seen  that  sample  mean is  unbiased  for  the

population mean, the variance of this is equal to sigma square by n. So, if estimator is

unbiased and its variance converges to 0 then we also know that it will be consistent. So,

what we are seeing that T 1 is unbiased and consistent for estimating mu.

Now, if you look at T 2. So, that is equal to expectation of T 2 is equal to 2 by n into n

plus 1 sigma i is equal to 1 to n i expectation of X i that is again mu. So, sigma i is n into

n plus 1 by 2. So, you get 2 by n into n plus 1 into n into n plus 1 by 2 into mu. So, these

terms cancel out you get only mu. So, T 2 is also unbiased let us look at variance of T 2. 

Now, variance of T 2 if you take this is constant. So, it will become square 4 n square

into n plus 1 square sigma i is equal to 1 to n i square into variance of X i, variance of X i

is  sigma  square.  Since,  we  have  assumed  independence  of  the  observations  the

correlation or covariance term will not come here you get this. Now, sigma is square we

have the formula so you get 4 n square n plus 1 whole square n into n plus 1 into 2 n plus

1 by 6 sigma square. So, after simplification you get it as 2 by 3; 2 n plus 1 divided by n

into n plus 1 sigma square.

So, as n tends to infinity this goes to 0. So, T 2 is also unbiased and consistent for sigma

square. However, let us compare the variances what is variance of T 2 by variance of T 1.
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Variance of T 2 divided by variance of T 1. So, sigma square is coming here sigma

square is appearing here by n by n so that will cancel out. So, you get the term as 2 by 3

2 n plus 1 divided by n plus 1.

Obviously, this is always greater than 1 for n greater than 1. If n is equal to 1 of course,

this will be equal to 1 and if n is equal to 1 actually T 1 and T 2 are both equal to X 1 so

that case is of not any interest. So, in general T 2 T 1 is more efficient than T 2. So, here

you have seen we have 2 estimators both of which are unbiased as well as consistent for

the sample mean, but one of them can be preferred over the other if we are applying the

criteria of a smaller variance. 
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Now, let me also take another distribution say suppose we consider a random sample

from a normal distribution,  where mean I was assume to be 0 and variance is sigma

square. We have already discussed this example in the context of estimation of sigma

square when mu are some fixed volume mu naught. Now, whenever mu is some fixed

value mu naught you can always shift the observations so that the mean can be made to

be 0.

Now,  suppose  my  interest  is  not  to  consider  estimation  of  sigma  square,  but  the

estimation of sigma. So, consider the estimation of sigma say. Now let us look at the

lower bound the density function is of the form 1 by sigma root 2 pi e to the power minus

x square by 2 sigma square, where x is of course, any real value. Log is equal to minus

log sigma minus 1 by 2 log 2 pi minus x square by 2 sigma square; so, derivative of this

with  respect  to  sigma that  is  minus  1  by  sigma minus.  Now derivative  of  this  will

become 0 then derivative of 1 by sigma square is minus 2 by sigma cube. So, it will

become x square by sigma cube that is equal to 1 by sigma cube we can write it as 1 by

sigma x square by sigma square minus 1. 

So, expectation of del log f by del sigma is equal to 1 by sigma square expectation of X

square by sigma square minus 1 whole square. Now, if X follows normal 0 sigma square

then X by sigma follows normal 0 1 X square by sigma square will follow chi square on



1  degree  of  freedom.  So,  therefore,  this  will  have  expectation  1  and  therefore,

expectation of the variable minus its mean square that is going to be the variance.

Now, variance of a chi square is twice its degrees of freedom. So, this term will become

equal  to  2  so,  this  is  simply  equal  to  2  by  sigma  square.  Say  if  we  consider  the

information that will be equal to 2 n by sigma square. So, the FRC lower bound for

estimation of sigma that will be equal to sigma square by 2 n. In the following class I

will consider two estimators for this see whether they any of them attain the lower bound

and also compare them so, that I will be doing in the following lecture. 


