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In the previous lecture I explained the method of finding out a Lower Bound for the

Variance of an unbiased estimator for a given parametric function. As I mentioned it was

derived independently by three statisticians Frechet Rao and Cramer. And therefore, we

have named it as a  Frechet  Rao Cramer lower bound that is FRC lower bound for the

variance of an unbiased estimator.

 We have seen that there are cases where we can find out an estimator for which this

lower bound is attained, there are also cases where it is not attained. We gave a condition

under which an unbiased estimator will attain this lower bound. The condition was in the

terms that it should be linearly related with a function S X theta with probability 1. This

method as I explained, this method of lower bounds is very very useful from 2 points of

view.

One is that given any estimator we can compare its variance with the lower bound and

therefore, we know that how far we are from the actual and; that means, what could be

the best possible way minimum variance and where are we; that means, where is our

estimator is standing in its relative position. And second thing is that if we are able to

obtain  an estimator  for  which it  is  equal  to  the  lower bound then certainly  it  is  the

minimum variance unbiased estimator that is among the unbiased estimator it will be

certainly the best.

So, from this point of view this method of lower bounds is extremely useful. We have

seen that FRC lower bound as I call it is dependent upon certain regularity conditions

that  is  when  the  density  or  the  mass  function  under  consideration  satisfy  certain

conditions  then  only  this  lower  bound  is  valid.  We also  see  in  this:  what  are  the

parametric functions for which this lower bound is attained. So, let me give it in the form

of a theorem.
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So, we have a random sample X 1 X 2 X n and we know that the F RC lower bound for

the  variance  of  an  unbiased  estimator  of  say  g  theta  is  attained;  then  what  are  the

parametric functions apart from g theta for which this will be attained. Then there answer

is  that  they  are actually  the  linear  functions  of  g  theta,  then the  class  of  parametric

functions for whom the unbiased estimators attain this FRC lower bound; then this class

is the class of linear functions of g theta.

Like I said what is the unbiased estimator for which the lower bound will be attained,

that  should  be  a  linear  function  of  S X theta  with  probability  1.  Now what  are  the

parametric functions for which it will be attained then they should be simply the linear

functions of g theta that is the statement of this theorem; let me prove this theorem here.

So, let us consider say T X let T X be an unbiased estimator of g theta and let variance of

T X equal the FRC lower bound.

Then certainly we know that T X and S X theta they are linearly related with probability

1 we will use this with probability 1 as an abbreviation here. So that means there exist

functions say alpha theta and beta theta such that say T X plus alpha theta S X theta is

equal to say beta theta with probability 1; this should be true for all theta ok. Now in this

relation let us take expectation on both the sides.

So, expectation of T X plus alpha theta expectation of S X theta is equal to beta theta for

all theta. Since this statement is true for all; that means, for random variable X here it is



true  with  probability  1.  Therefore,  it  is  possible  to  take  the  expectations  basically

expectation means either we have taken summations or we have taken the integrals or a

mixture of the 2. Therefore, we will get expectation of this equal to beta theta. Now p is

unbiased estimator for g theta; that means g theta now expectation of S X theta that is 0.

Therefore,  this is simply giving you beta theta because this is equal to 0. So, in this

relationship beta theta has turned out to be g theta here.
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Now let us consider now, let h theta be any other parametric function for which there

exist an unbiased estimator for which the lower bound is attained ok. So, for which there

is an unbiased estimator say U X such that variance of U X attains the corresponding

FRC lower bound. We have seen that even if we change the parametric  function the

lower bound is changed, but the condition for attaining the lower bound remains the

same.

Therefore, so, there will exist that U X and S X theta are again linearly related with

probability 1; that means, we can say that there exist say functions alpha star theta and

beta star theta such that U X plus alpha star theta into S X theta is equal to beta star theta

with probability 1 for all theta. Once again since this statement is true with probability 1

we can take expectations. So, if we take expectations we get expectation of U X will be

equal to h theta plus alpha star theta into expectation of S X theta is 0 is equal to beta star

theta. So, we are getting h theta is equal to beta star theta. 



So, if we look at these two equations now T X plus alpha theta S X theta that will be

equal to g theta and U X plus alpha star theta S X theta is equal to h theta. So, we have T

X plus alpha theta S X theta is equal to g theta with probability 1 for all theta and U X

plus alpha star theta S X theta is equal to h theta with probability 1 for all theta belonging

to theta. If this relationship is true for all theta we can fix a value of theta fix a value of

theta say theta star or let me put theta naught because already. So, many stars are there.
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So, in that case we can write the relationship as T X plus alpha theta naught S X theta

naught is equal to g theta naught with probability 1 and U X plus alpha star theta naught

S X theta naught is equal to h theta naught a with probability 1. That means, what I have

done is that these two relations I have written for a fixed value of theta that is theta

naught. Now in both of these equations S X theta naught is appearing so, I can eliminate

that. So, eliminate S X theta naught from the two equations that is in the first equation

multiply by alpha star theta naught in the second equation multiply by alpha theta naught

and then subtract.

So, we get alpha star theta naught T X minus alpha theta naught U X is equal to alpha

star theta naught g theta naught minus alpha theta naught h theta naught with probability

1. Now, once again you can take the expectation because what is happening here is that

this coefficient is a fixed number this coefficient is a fixed number and right hand side is



also a fixed number. So, we can say that a times say T X plus say b times U X is equal to

c where a b c are constants and this statement is true with probability 1.

So, we can again take expectations if we take expectations we get a times g theta that is

expectation of T X plus b times h theta is equal to c. Now you look at the significance of

this I started with a function g for which the FRC lower bound was attained, I assumed h

theta to be any other parametric function for which the lower bound is attained and now

we are getting that such g and h will be related using linear relationship here. So, g and h

are  linearly  related  therefore;  all  functions  for  which  the  FRC lower  bound  will  be

attained,  they  will  be  linear  functions  of  g.  Now, in  yesterdays  lecture  I  have given

examples in some examples the lower bound was attained let us take one such example

say a Poisson distribution.
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So, we had X 1 X 2 X n following Poisson lambda where lambda is positive; we have

seen that X bar was unbiased for lambda and variance of X bar was lambda by n which

was also the FCR lower bound for unbiased estimator of lambda. So, if I consider say

lambda square let g lambda be equal to lambda square, in that case what you will get; the

FRC lower bound for variance of an unbiased estimator of g lambda now that will be

equal to g prime lambda square into the FRCLB for lambda.

So, this will become 2 lambda square that is 4 lambda square and this is lambda by n. So,

it is equal to 4 lambda cube by n. Now, let us consider say Y is equal to sigma X i of



course, this will follow Poisson n lambda. And you can look at Y into Y minus 1 by n

square let me call  it  to be say U, then expectation of U it is equal to 1 by n square

expectation of Y square minus expectation of Y that is equal to. Now this will become

equal to n lambda plus n square lambda square minus n lambda expectation of Y square

is n lambda plus n square lambda square because, if we consider Poisson distribution

with  parameter  lambda  the  second  moment  is  lambda  square  plus  lambda  and

expectation Y is equal to n lambda.

So, this divided by n square so, that is equal to lambda square. But if we consider say

variance of U that will be equal to this can be calculated easily that will turn out to be

because this will involve expectation of U square minus expectation of U whole square.

Now, expectation of U is lambda square and expectation of U whole square will involve

expectation of Y to the power 4, expectation of Y cube and expectation of Y square

which  is  available  all  the  expressions  are  there  for  the  Poisson  distribution.  After

simplification you get it as 4 lambda cube by n plus twice lambda square by n square.

Now, you can easily see that this is bigger than 4 lambda cube by n. It is understood that

this statement should be true because lambda square is not a linear function of lambda

here.  We have already shown that  for lambda the variance of the unbiased estimator

attains the lower bound. Therefore, all other functions for which it will be attain they will

be of the form a lambda plus b and this is lambda square. So, certainly this cannot be

attained.  Later  on  we  will  show  that  actually  this  is  minimum  variance  unbiased

estimator using another method.
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Let  us  consider  general  form of  an distribution in  the exponential  family. So,  let  us

consider a density in the exponential family. What is exponential family? The density is

of the form c theta h x e to the power Q theta T x. Now if we have a distribution of this

form it is said to be a distribution in the exponential family; we can see examples here

say x follows binomial n p, where n is known.

Then the form of the distribution is n c x p to the power x 1 minus p to the power n

minus x this we can write as n c x 1 minus p to the power n p by 1 minus p to the power

x this we write as 1 minus p to the power n n c x e to the power x log p by 1 minus p. So,

if you compare it with this form here you have a function of the parameter that is c theta

here theta is p h x is n c x here e to the power Q theta T x. So, here Q theta is a function

here log p by 1 minus p and x is the term T x so, this is a distribution. So, binomial

distribution; binomial distribution with n known is in exponential  family. Let us take

some more popular examples in the statistics.
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Let us consider say x following Poisson lambda distribution. The form of the probability

mass function is f x lambda it is equal to e to the power minus lambda lambda to the

power x by x factorial this we express as e to the power minus lambda 1 by x factorial e

to the power x log lambda.

Once again if we compare it with this particular form you can see here e to the power

minus lambda is a function of lambda 1 by x factorial is a function of x. So, you can call

it h x x can be written as T x and Q theta it is log lambda here. So, you can easily see that

this is also a distribution in exponential family we can actually also consider this we can

consider  as  a 1  parameter  exponential  family  we may also consider  multi  parameter

exponential family here parameter could be multi parameter here. So, here we write c

theta h x e to the power sigma Q i theta T i x i is equal to 1 to k. So, theta could be say p

dimensional and we may have this particular form here.

So, this is actually called see if we have the same dimension here k then this is called a k

parameter exponential family. Let us consider say x following normal mu sigma square

here both mu and sigma square are unknown f x mu. Sigma square we can write as 1 by

sigma root 2 pi e to the power minus 1 by 2 sigma square x minus mu whole square this

we express in the following fashion.

If we expand this term you get a term mu square. So, you get minus mu square by 2

sigma square and there is 1 by sigma here 1 by root 2 pi you have e to the power minus x



square  by  2  sigma  square  plus  mu  x  by  sigma  square.  Now, this  is  a  function  of

parameters here. So, this can be considered as a c theta function this constant 1 by root 2

pi can be considered as a function of x alone and then you have you can write here T 1 x

is equal to x square and Q 1 theta is equal to minus 1 by 2 sigma square. Similarly here T

2 x can be taken to be x and q 2 theta can be considered to be mu by sigma square. 

So,  this  is  a  distribution  in  2  parameter  exponential  family  most  of  the  standard

distributions in statistics that we use for example, gamma distribution with r known and

lambda unknown that is a distribution and exponential family; if we consider a negative

exponential distribution with the scale parameter that is also in the exponential family.

So, there are various distributions which are actually in the exponential  family. Now,

exponential families have some important feature and in particular with respect to the

FRC lower bound.
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So, let us consider in the context of the lower bound. So, if we are writing 1 parameter

exponential family as let us take log of this that is equal to log of c theta plus log of h x

plus Q theta T x. If we consider the derivative of this with respect to theta we get c prime

theta by c theta plus T x into Q prime theta. Now, if you remember your S x function it is

nothing, but sigma del log f x i theta by del theta for i is equal to 1 to n. So, this becomes

simply n times c prime theta by c theta plus q prime theta sigma T x i.



Now, you see here this is constant as far as variable is concerned. So, this is actually a

linear function of sigma T x i. So, S x theta is a linear function of sigma T x i. So, in the

distributions  which  are  in  the  exponential  family  the  variables  or  you  can  say  the

estimators  which are linear  functions  of sigma T x i.  The variances  of them will  be

attaining the lower bound for the estimation of the expectation of this. So, what we are

saying is let us call it say W that is 1 by n sigma T x i.

So, this is linearly related with S x theta with probability 1. Hence any linear function of

W will be attaining the FRC lower bound for the variance of expectation for the variance

of unbiased estimator of expectation w. We can also see that what will be this expectation

in general see in this particular case see we discussed some examples like a Poisson

distribution. Now, in this Poisson distribution if you see c theta is e to the power minus

lambda its derivative will also be equal to e to the power minus lambda. So, you will get

minus n here and q is log lambda. So, q prime will become 1 by lambda.

So, you are getting minus n plus lambda and this will become sigma x i. So, when we say

v v is equal to x bar and this W is equal to x bar here. So, x bar is attaining the FRC

lower bound for expectation of x bar that is lambda. So, we already proved this statement

I am just once again demonstrating that if the distribution is in the exponential family

then all the linear functions of 1 by n sigma T x i they will have variance equal to the

FRC lower bound.

So, this is a remarkable thing whenever we are having distributions and the exponential

family  there  will  be  certain  parameters  for  which  the  lower  bound will  certainly  be

attained. Now, let me also obtain the expression for this what is expectation of w? So, let

us also we also determine expectation of W here.
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So, that will be let us consider the integral or the summation of the density function or

the mass function will be equal to 1. So, I had written a general (Refer Time: 30:38) still

just integral meaning that it covers the discrete and continuous cases both. So, c theta h x

e to the power Q theta T x is equal to 1.

Now, we make certain assumptions here like differentiation under the integral sign will

be assumed because in the Rao, Cramer lower bound itself we made certain assumptions

certain regularity assumptions. So, that assumption should be true here also. So, if we

assume that then we can differentiate under the integral sign. So, we will get here there

are 2 terms which involve theta. So, if we take the first one we will get c prime theta h x

e to the power Q theta T x d mu x. And if you differentiate the second term you will get c

theta h x e to the power Q theta T x into T x d mu x and of course, Q prime theta will

also come this is equal to g or the right hand side is 1 so, the derivative is going to be 0.

Now, this term we can write as divided by c theta multiplied by c theta then that will be

integral of the density once again. So, that will become equal to 0. If you look at the

second term this density is as such then you are getting this term as additional term. So,

Q prime theta expectation of T X this is equal to 0; that means, what we are saying that

expectation of theta expectation of T X is actually equal to minus c prime theta by c theta

into Q prime theta. Consider for example, that case of Poisson distribution in the case of

Poisson distribution c was e to the power minus lambda. So, c prime theta by c theta will



become equal  to  minus 1 that  is  minus minus becomes plus Q prime theta  that  will

become 1 by lambda. So, if you put it in the denominator you will get lambda here.

So, in the case of Poisson distribution this will become lambda sigma of T X i by n was x

bar. So, the statement is that x bar will attain FRC lower bound for the estimation of

lambda. So, that statement we verified directly now if we are having the distribution the

exponential family this will be always true.
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Let me take one more application here; consider say geometric distribution yesterday we

have seen here the form of the distribution we have see taken theta into 1 minus theta to

the power x for x is equal to 0 1 2 and so on. So, we can write this is equal to theta e to

the power x log 1 minus theta. So, here c theta is equal to theta if we compare with the

distribution in the exponential family h x is 1 T x is equal to x and Q theta is equal to log

of 1 minus theta.

So, naturally minus c prime theta by c theta q prime theta that is going to be equal to

minus 1 c theta is theta Q prime theta will become equal to minus 1 by 1 minus theta. So,

it is equal to 1 by theta minus 1; that means, and here x T x is equal to x so, W is equal to

x bar. So, expectation of W that is equal to expectation of x bar is equal to 1 by theta

minus 1 and variance of x bar will be attaining the Rao Cramer lower bound it will be

same as the FRC lower bound for estimation of 1 by theta minus 1. Now if we consider a



linear function of it so, 1 by theta also we can consider. So, we can say that X bar minus

1 is minimum variance unbiased estimator for 1 by theta. So, this statement is also true.


