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Let us take another popular example that is the normal distribution. So, let us take say X

1, X 2 X n following normal mu sigma square. Now, as before we will consider different

cases say; sigma square is equal to sigma naught square that is a known ok. In that case

we want estimate of say UMVUE of mu. So, if we write down the distribution here 1 by

sigma root 2 pi. So, here it will become sigma naught e to the power minus 1 by 2 sigma

naught square X minus mu whole square. 

So, log of f is equal to minus log of sigma naught minus half log 2 pi minus x minus mu

square by 2 sigma naught square. So, if we consider derivative of this with respect to mu,

we get simply x minus mu by sigma naught square. So, expectation of del log f by del

mu whole square that is equal to expectation X minus mu square by sigma naught to the

power 4. Once again in the normal distribution this is reducing to the variance term that

is expectation of X minus mu square is variance. That is sigma naught square by sigma

naught to the power 4 that is; 1 by sigma naught square.
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So, information content in this is information contained in this will be n by sigma naught

square  in  the  sample.  So,  the  Fisher,  Rao,  Cramer  lower  bound  for  variance  of  an

unbiased estimator of mu is sigma naught square by n. Now if you consider say X bar,

then expectation of X bar is mu. And what is variance of X bar? That is sigma naught

square by n that is equal to this value.

So, X bar is UMVUE of mu. Let us take another case when say mu is known and we

want to estimate, say mu is equal to mu naught is known and we want sigma squares

estimator. So, here the density function will be written as a function of sigma square 1 by

sigma root 2 pi e to the power minus x minus mu square by 2 sigma square. So, log of f

becomes minus half log sigma square minus half log 2 pi minus x minus mu square by 2

sigma square.

So, differentiation of this with respect to sigma square gives minus 1 by 2 sigma square

plus x minus mu square by 2 sigma to the power 4 which I can write as, x minus mu

square by sigma square minus 1; 1 by 4 sigma 1 by 2 sigma to the power 1 by 2 sigma

square. So, if we consider expectation of.
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So, if we consider expectation of del log f by del sigma square whole square. That is

equal to 1 by 4 sigma to the power 4 expectation of X minus mu by sigma whole square

minus 1 whole square. Once again you look at this X minus mu by sigma is a standard

normal variable X minus mu by sigma square it will follow chi square 1. So, expectation

of this is equal to 1 and therefore, this term reduces to the variance.

So, variance is twice the degrees of freedom; that is equal to 2 by 4 sigma to the power 4.

So, you get 1 by 2 sigma to the power 4. So, the Fishers information in this problem will

be a n by 2 sigma to the power 4. So, the Fisher, Rao, Cramer lower bound for variance

of an unbiased estimator of sigma square is 2 sigma to the power 4 by n. Now, in this

case let us consider see the maximum likelihood estimator for example or the method of

moments estimator.

So, that would be for example, 1 by n sigma X i minus mu naught square. So, this is now

you can see here X i minus mu naught by sigma that will follow a standard normal. So,

sum of squares will be chi square n. So, expectation of that is n so, this divided by n will

have expectation 1. So, if we multiply by sigma square we will get sigma square. So, this

is unbiased for sigma square because, we can see here as sigma X i minus mu naught by

sigma whole square that follows chi square on n.

So, expectation of n T is equal to n and variance of n T. Sorry this divided by sigma

square  and this  divided by sigma square  that  will  be  equal  to  2 n.  So,  we will  get



variance of T as equal to twice sigma to the power 4 by n because, this will go here and n

square will come to know below. So, we will get 2 sigma to the power 4 by n which is

same as this value once again here.

So, T is equal to 1 by n sigma X i minus mu naught square. It is the minimum variance

unbiased estimator for; obviously, you can see here that if mu was not known then you

could not have used this estimator. So, this solution is specific to this problem that is

when we are dealing with one parameter case mu naught is known to us.
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Let us consider say a random sample from exponential distribution with mean say theta.

Now, in this case the density function is this. So, log of the density function is minus log

of theta minus x by theta. So, the derivative with respect to theta will be minus 1 by theta

plus x by theta square that is x minus theta by theta square. So, expectation of del log f

by del theta whole square that is expectation of X minus theta square by theta to the

power 4. In the exponential distribution with mean theta variance is equal to theta square.

So, this term becomes theta square by theta to the power 4 that is equal to 1 by theta

square. So, the information in the sample about theta is n by theta square and the lower

bound Fisher, Rao, Cramer lower bound for variance of an unbiased estimator of theta is

theta square by n. If we consider X bar then expectation of X bar is equal to theta and

variance of X bar is equal to theta square by n. So, this will prove that X bar is minimum

variance unbiased estimator for theta in the case of negative exponential distribution.



It is not necessary that the lower bound is always attained. In fact, if you see carefully in

each of these problems we have calculated the derivative here. So, S function you can

see here for example, S would have become here n by minus n by theta plus sigma x i by

theta that is n x bar. So, this is linearly related with x bar and therefore, x bar must attain

the variance lower bound for its expectation. If you see the previous problem, for the

estimation of sigma square here del log f by del sigma square is this function. So, if we

look at S function S X i sigma square that would have become minus n by 2 sigma

square sigma X i minus mu square by something which is a linear function of sigma X i

minus mu whole square.

And therefore, it is natural that sigma X i minus mu naught whole square by n will attain

the lower bound here. So, if you see the estimation of the Poisson distribution case here

the derivative is equal to minus 1 plus x by lambda. So, if you look at S function it would

have become minus n plus sigma x i by lambda, which is again linearly related with x

bar. Therefore, X bar must attain X bar must attain the lower bound for the variance of its

unbiased estimation. So, in all these problems it is naturally coming; let me take another

example where it may not be natural and therefore, the lower bound may not be attained.

Let us consider say let X have a geometric distribution and we consider the following

form theta into 1 minus theta to the power x; where theta is any number between 0 and 1.

So, here the problem is of estimation of theta. So, let us look at log of f x theta that is

equal to log of theta plus x times log of 1 minus theta. So, if we consider del log f by del

theta we get 1 by theta plus with a minus sign x by 1 minus theta here.
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So, if we look at the expressions here expectation of del log f we can use the moment

structure of the geometric distribution. So, if we use that this is equal to expectation of 1

by theta minus X by 1 minus theta whole square. So, after simplification this turns out to

be 1 by theta square into 1 minus theta. So, since I have taken only one observation here

the information will remain the same. And the lower bound for unbiased estimator of

theta is theta square into 1 minus theta.

Now, here theta is not the mean actually if you look at the mean of this distribution that

will be 1 minus theta by theta. So, x will attain the lower bound for that for the variance

of an unbiased estimator for 1 minus theta by theta. But suppose we are considering

estimation of theta, if we are estimating theta here then it will not be attained. So, you

can see here what is the interpretation of say theta here, theta is the probability of X is

equal to 0. Because if in the probability mass function we put X equal to 0 here I get

theta.

So, if I define an estimator for theta as say delta X is equal to 1. If X is equal to 0 it is

equal  to 0 if  X is not equal  to 0; that  means,  if  X is equal  to 1 2 and so on.  Then

expectation  of  delta  X will  be  equal  to  1  into  probability  X equal  to  0  plus  0  into

probability X not equal to 0. That will means it will be simply equal to theta and what is

expectation of say delta square X that will also be theta. So, variance of delta X that will

be equal to theta minus theta square that is equal to theta into 1 minus theta.



Now here if you compare with this lower bound here, lower bound is theta square into 1

minus theta and theta is any number between 0 and 1. So, this one will  be naturally

bigger than this. So, the lower bound is not attained. So, we do not know whether delta is

minimum variance unbiased estimator here. We may try another approach here. Let us

consider expectation of T X is equal to theta. If we consider this then we will get sigma t

x into theta into 1 minus theta to the power x is equal to theta as x varies from 0 to

infinity.

That will give me t 0 in to theta plus t 0 into theta into 1 minus theta plus sorry plus t 1

plus t 2 into theta into 1 minus theta square and so on is equal to theta. Now, you look at

this; what we are getting that coefficient of theta here if you see so, this you can cancel

out actually t 0 plus t 1 into 1 minus theta plus t 2 into 1 minus theta square and so on is

equal to 1. This is true for all theta belonging to the interval 0 to 1. Now, if you see this

carefully, what is the solution? See if you look at the coefficient of say theta here. Theta

will have coefficient t 1; see for example, if I look at the coefficient of the constant term,

constant term is t 0 plus t 1 plus t 2 and so on that should be equal to 1.

If you take coefficient of theta then you get minus t 1 minus 2 t 2. Then in the next one

also minus 3 t 3 and so on that should be equal to 0. Then if you look at the coefficient of

theta square you will get t 2 then here in the second one it will become 3 t 3 and so on.

So, if you solve this solving this we get t 0 is equal to 1 t 1 t 2 and so on is equal to 0

which is nothing, but this t function that is becoming same as this. So, we have proved

otherwise that T X that is equal to delta X is UMVUE because; this is the only unbiased

estimator which we obtain through solving the equation itself.
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However, using the method of lower bounds we are not able to prove this result here.

Now  many  times  we  may  not  be  interested  directly  in  the  theta  itself,  we  will  be

interested in some function say g theta of theta; in that case what we can do is we can

modify this lower bound formula like.
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So, FRC lower bound for estimating a function g theta of theta, so let me call it phi. So,

we will write variance of delta greater than or equal to 1 by n time’s expectation del by

del phi log of f star x phi. Because f x theta density, now I am writing as f star x phi



because we have substituted theta by g inverse phi in whatever form we are able to do

that. So, if we look at this derivative here del by del phi log of f star x phi; you can apply

the chain rule we can write it as del by del theta log of f x theta into del theta by del phi.

This you can write it as del by del theta log of f x theta divided by g prime theta. So, if

you substitute this function here, we get variance of delta greater than or equal to g prime

theta square divided by n time’s expectation of del by del theta log of f X theta whole

square. That is equal to g prime theta whole square by the information in the sample

about theta. That means, if we have the lower bound for the variance of an unbiased

estimator of theta. Then from there we can derive for any other function what we have to

do, we have to multiply by the lower bound by g prime theta square.

So, this we can say it is equal to g prime theta square into the Fisher, Rao, Cramer lower

bound  for  theta.  So,  this  new formula  can  be  obtained.  Moreover  the  condition  for

obtaining  the  lower  bound for  attaining  the  lower  bound,  that  will  remain  the  same

because the condition is coming only from the Cauchy Schwarz inequality which was

dependent upon the estimator  being linearly related with S X theta.  Now the g theta

function does not affect that thing. So, the condition for, the condition for attaining the F

remains the same.
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That  is  your  delta  X  that  is  delta  X  must  be  linearly  related  with  S  X  theta  with

probability  1. Tomorrow’s class we will  be considering further properties and further



ramifications of this lower bound as well as we will see some extensions. There can be

two types of extensions. One is the extension to the higher dimensions; that means, if in

place of one dimensional parameter I have several dimensional parameter; then what will

be the form of the Rao, Cramer inequality.

Similarly, here  we have  used  first  order  derivative  in  the  lower  bound.  Now, if  we

consider  second and higher  order  derivatives  then  the  level  of  the inequality  can  be

changed.  So,  they  are  generalization  into  another  direction.  Another  thing  is  that

whenever  we are considering differentiation,  in  some sense we are taking the limits.

Suppose we do not take the limits in place of that we write the difference. For example,

we are saying derivative so we are writing down the value of the function at 2 points

theta and theta plus delta say.

So, we consider the difference there and then look at the inequality that inequality will be

called  the  equality  without  the  regularity  condition.  Because  when  we  are  having

regularity conditions then we are considering the derivative and other things. But if that

is not satisfied then what? So, we will have another extension in that direction. So, in the

next  lecture  we  will  be  considering  extensions  to  these  things  and  then  further

applications of this. 

That is all for today’s lecture.


