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Lower Bounds for Variance- I

So, now we will take up another topic that is for the Lower Bounds for the Variance.

Now, what is this concept? Earlier, we have seen that unbiasness is a desirable property

or desirable criteria to use an estimator. However, we have also seen the example that in

a given problem, there can be several unbiased estimators.  Now, if  there are several

unbiased estimators which one to choose, then we can decide some additional criteria

such as variance. The one which has smaller variance will be consider to be more stable

in some sense.

Now therefore, we need to have an estimate of that what could be the variance or what

could be the minimum variance. So this gives the idea or you can say this led to the

development of methods for finding out lower bounds for the variance of an unbiased

estimator.
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So, in this section, we will discuss various methods for determining the lower bounds on

the variance of unbiased estimators. As we have seen in the case of maximum likelihood

estimation  in  the  last  results  that  I  gave  that  variance  asymptotic  variance  of  the



maximum  likelihood  estimator  was  1  by  the  information.  Now,  this  is  asymptotic

variance.  So, if  the maximum likelihood estimator  is the best  in some sense then its

variance  will  not  be  below 1  by  I  theta  naught,  that  means,  the  Fisher  information

measure.

The question comes that whether similar result we can give for finite samples. Now, this

is the precisely the question that was posed to Indian statisticians C.R. Rao in his class in

1943 at Indian Statistical Institute, and he started working out for finite samples. And it

led to the famous lower bound by Rao. However, at the same time the result was also

proved by Fisher  in  1943,  by Cramer  in  1946,  therefore,  it  is  now popularly  called

Fisher, Rao, Cramer inequality.

Now, once again in order to prove this, we need certain regularity conditions they are

known by the name Wolfowitz’s wits regularity conditions named after the statistician

Jacob Wolfowitz. So, as before we have a random sample be a random sample from a

distribution having say PDF. And of course, it could be pmf f x, theta with respect to say

measure mean. So, we assume the usual conditions for the existence of a density function

or the mass function etcetera.

Now, an estimator  delta  x is  to be considered for the parameter  theta.  We make the

assumptions  that  theta  lies  in  an open interval  of the real  line,  the derivative  of  the

density  or the mass  function  exist,  and of  course for  all  x  are  for almost  all  x.  The

integral I used a more general notation, because if it is discrete this will be replaced by

summation, I have written here d mu, so that takes care of both the cases. So, this is a n

fold integral or summation.  This can be differentiated under the integral sign for any

delta such that this is an integral function that means this integral exists that means, for

any integral function its expectation should be or its integral should be differentiable. So,

that the above integral exists. This is positive for all theta. Once again this is related to

the Fisher information measure.
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Under these conditions we have the following inequality I will call it fresh Fisher Rao

Cramer inequality. Rao Cramer inequality, because Fisher’s is paper appeared in 1943,

Rao’s paper appeared in 1945, Cramer’s paper appeared in 1946. So, they all seem to

have done it independently under assumptions 1 to 4. If expectation of delta x is equal to

theta plus b theta, then variance of delta is greater than or equal to 1 plus b prime theta

whole square divided by n times expectation del by del theta log of f x theta whole

square.

Firstly, let us look at the proof of this. So, what we are doing is that for an estimator

delta, we are providing the lower bound for the variance. This right hand side you can

see it is not dependent upon the twice of the estimator that we have chosen, that means,

any estimator of any unbiased estimator of theta plus b theta will have the minimum

variance which will be greater than or equal to this, because this is the lower bound. So,

it may be attend or it may not be attend. Let us look at the proof of this result first of all.

So, expectation of delta x is equal to theta plus b theta. Now, this is of course, true these

statements are true for all theta.

Now, we are assuming that we can differentiate under the integral sign. So, this is delta

product f of x i, theta d mu x. Now, this denotes d mu x 1, d mu x 2, d mu x n this is

equal to theta plus b theta for all theta differentiating under the integral sign. Let me

again emphasize that this integral is a generalized lebesgue integral. That means if we are



dealing with the discrete distributions, then this will be replaced by the summation. So,

this is delta x 1, x 2, x n product of f of x i, theta d mu x 1 d mu x 2 d mu x n. So, this is

the n fold integral.

So, if you differentiate with respect to theta, we will get delta x. Now, derivative of the

product that you can easily write as sigma del by del theta this is log of f x i,  theta

multiplied by product f x i, theta d mu x that is equal to 1 plus b prime theta. Now, we

use some notation this term I call say S x, theta. Then I am getting delta x into S x, theta

into the divine distribution of x 1, x 2, x n and d mu x id mu x 1 d mu x 2 direction. So,

this we can write as expectation of delta x into s x theta it is equal to 1 plus b prime theta.

Now, what we can see that this term, if we look at this we have made the assumption

here that for any function delta for which this integral exists this can be differentiated.

So, if we look at this particular term that is S x, theta then expectation of S x, theta can

also be differentiated under the integral sign. If we look at that then this is going to be 0.

Let us see this. Let me give this 2 here.
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Now, we have the integral of the distribution of x 1, x 2, x n equal to 1 by the property of

the distribution that the integral or the summation should be equal to 1 over the whole

range. So, once again if we differentiate let me call it relation 3 under the integral sign,

we get sigma del by del theta f i f x i, theta into product of f x i, theta. See, if you

differentiate one particular term, then other will be there. So, we can keep that also and



then divide by that. So, this becomes sigma del by del theta f x i, theta by f x i, theta

product f x i, theta d mu x is equal to 0.

Now, this term I can write as del by del theta log of f x i, theta. Now, compare this, here

we defined S x, theta to be sigma del by del theta log of f x i, theta and this is the term.

So, what we have got here we have got integral of S x, S x, theta product f x i, theta d mu

x is equal to 0, that means, expectation of S x, theta is 0. If expectation of a random

variable is 0, then expectation of that random variable equal to the covariance term. So,

we can say that using this in 2, we can write that covariance between delta x and S x,

theta is equal to 1 plus b prime theta. Now, this relation we square it.
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Squaring the above relation we get 1 plus b prime theta square is equal to covariance

square delta x S x, theta. Now, covariance square this is less than or equal to the variance

of delta into variance of S x, theta if we use Cauchy-Schwarz inequality. So, this is less

than or equal to variance of delta x into variance of S x, theta, this is true in general let

me say it here using Cauchy-Schwarz inequality. Now, once again since expectation of S

x, theta is 0, variance is nothing but expectation of S x square or we can also say that

variance of S x, theta. Now, that is equal to variance of sigma del by del theta log of f x i,

theta. Now, this is variance of a sum.

Now each term in  the  sum involves  each  x  i;  x  i’s  are  independent  and  identically

distributed  random variables.  So,  this  becomes  nothing  but  the  n  times  we can  say



variance of del by del theta log of say f x 1 theta. Since expectation of del by del theta

log f x theta is 0, this is nothing but expectation of del by del theta log f x theta square.

So, this is equal to n times expectation by del by del theta log of f x theta square.

So, if we are using the notation I theta for this term, then this is nothing but the Fisher’s

information in the sample. We can say Fisher’s information contained in the full sample.

So, this we can then write 4. Here we are having variance delta x greater than or equal to

1 plus v prime theta whole square divided by this, and that term is this variance of delta x

greater than or equal to 1 plus b prime theta. See this will be whole square here divided

by n times expectation del by del theta log of f x 1 theta whole square which we can also

write as 1 plus b prime theta square by I theta in the sample. This means the random

sample is x 1, x 2, x n. So, this is exactly the statement of the Cauchy-Schwarz of the

Fisher, Rao, Cramer inequality.

Now, we can look at the various ramifications of this. First of all in the assumption we

have  taken  the  delta  estimator  to  have  expectation  theta  plus  b  theta.  Suppose,  our

parameter of interest is theta and delta is an unbiased estimator then b theta will be 0. If b

theta is here then this term will vanish. So, the lower bound will come as simply 1 by the

information or 1 by n times expectation del by del theta log of f x, theta.
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So, we have the following case. As a corollary I write, if delta x is unbiased for theta,

then variance of delta x is greater than or equal to 1 by n times expectation del by del



theta log of f x 1 theta whole square that is 1 by I theta, this term as I defined Fisher’s

information in x 1, x 2, x n about theta.

Another point that let us see the Rao Cramer inequality that we have proved the proof

used Cauchy-Schwarz inequality. Now, Cauchy-Schwarz inequality has a condition for

the equality also when is that true. Equality is true when delta and s are that means, they

are linearly related you can say that S is a linear function of delta or delta is a linear

function of S. Since, here the random variables are involved we have to say that there are

linear functions with probability 1.

So, we can say as a remark the equality in FRC inequality is achieved if and only if delta

x and S x, theta are linearly related with probability 1, that is their exist functions say

alpha theta and say beta theta such that we can say delta x plus alpha theta S x, theta is

equal to say beta theta with probability 1. Now, another point I have been using that

expectation of del by del theta log f x theta square. And earlier I wrote this also as minus

expectation  del  2  by  del  theta  square  log  f  x  theta.  Now, that  is  true  provided  the

regularity conditions are satisfied.

So, let me prove that also here. Under the regularity  conditions,  under the regularity

conditions  expectation  of  del  by del  theta  log of  f  x  theta  square is  equal  to  minus

expectation del 2 by del theta 2 log of f x theta.
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So, let us look at the proof of this. Expectation of see we have to consider the second

derivative here. So, let us write this del 2 by del theta square log of f x 1 theta that is

equal to del by del theta of first derivative.  Now, the first derivative is nothing but f

prime by f. So, if you differentiate this, you will get second derivative here, multiplied by

f minus derivative of this and this. So that becomes square divided by f x 1 theta square.

So, if we consider expectation of this that is equal to integral of f double prime x 1 theta f

x 1 theta d. So, this will be cancelled out because when we multiply by f x 1 theta f x 1

theta. And f x 1 theta square that will cancel out minus second term will become f prime

x 1 theta by f x 1 theta whole square f x 1 theta dx.

Now, this term is 0, because of the assumption because integral f x 1 theta d mu x is

equal to one. So, you differentiate under the integral sign. So, this becomes 0. So, this is

nothing, but minus expectation of del log f x 1 theta by del theta whole square. So, these

are two alternative ways of evaluating this Fisher’s information measure. Now, let me

give examples of the situations where the lower bound is attained, and also the examples

where the lower bound is  not attained.  Certainly, whenever the lower bound will  be

attained,  the  unbiased  estimator  will  become  minimum  variance  unbiased  estimator

because it is attaining the lower bound.

So, there cannot be an either and by the estimator which will have the variance is smaller

than this form. So, this is one nice way of proving that a given estimator is minimum

variance  unbiased estimator. However,  in  the  case when it  is  not  attained,  then  it  is

difficult to prove the minimum variance unbiased estimator using this approach for that

we will take up another case or another approach here.

So, let me start with the some of the standard distributions let us consider say binomial

distribution with parameters n and p, where n is known. So, the parameter is actually, and

p takes any value between 0 and 1. So, we have to consider the estimation of p here.

Now, easily you can see that x by n is an unbiased estimator of p x by n is unbiased for p.

And also let us look at what is variance of x by n variance of this is simply p into 1

minus p by n.

Now, let us look at the lower bound here if it is unbiased then the lower bound is simply

equal to 1 by the information measure. So, here we can calculate this density function is

n c x p to the power x into 1 minus p to the power n minus x. So, we take log of this that



is equal to log of m c x plus x log p plus n minus x log 1 minus p. So, derivative of this

with respect to p will give x by p minus n minus x by 1 minus p which we can write as x

minus n p divided by p into 1 minus p.

So, in order to apply the lower bound, we calculate the information. And the information

term is equal to n times expectation del by del theta log f x 1 theta square. Since, in this

case, we have only one observation, so n will not be there we simply calculate this. So,

we have already evaluated the derivative del log f x p by del p. Now, we square it and

then take the expectation, so that gives us expectation.
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Log f x p by del p whole square that is equal to expectation of x minus n p square

divided by p square and 2 1 minus p square. Now, this is nothing but the variance of x

that is n p into 1 minus p in a binomial distribution. So, you get it as n by p into 1 minus

p. So, the FRC lower bound for the variance of an unbiased estimator of p is p into 1

minus p by n. Now, in this particular case, you observe here variance of x by n was equal

to p into 1 minus p by n which equals variance of x by n here. So, x by n is uniformly

minimum  variance  unbiased  estimator  of  p,  so  that  is  uniformly  minimum  variance

unbiased estimator. So, you can see here the method is quite useful in actually proving

that a given estimator is UMVUE naught.

Now let  us  take  say Poisson example.  So,  suppose we have  a  random sample  from

Poisson  distribution  with  the  parameter  lambda.  So,  naturally  we  want  to  estimate



lambda. Now, let us consider the density function e to the power minus lambda, lambda

to the power x by x factorial log of f that is equal to minus lambda plus x log of lambda

minus log of x factorial. So, if we consider the derivative of this with respect to lambda,

then we get minus 1 plus x by lambda that we can write as x minus lambda by lambda.

So, expectation of del log f by del lambda square that will be equal to expectation of x

minus  lambda  square  by  lambda  square.  Now,  in  the  Poisson  distribution  case,

expectation of x is lambda. Therefore, this is nothing but the variance and this is also

lambda. So, this is lambda by lambda square that is equal to 1 by lambda.
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That gives us so you get here the information as n by lambda. So, the FRC lower bound

for the variance of an unbiased estimator of lambda is lambda by n. Now, consider say x

bar then expectation of x bar is lambda what is variance of x bar variance is equal to

lambda by n which is equal to this FRC lower bound. This proves that x bar is UMVUE

of lambda. In this particular case, in the Poisson example I had given several unbiased

estimators. For example, S square I had given x 1 plus x 2 by 2 I had considered each x

i’s also unbiased for lambda.  But you can see that among all of them, x bar will  be

preferred, because this is the uniformly minimum variance unbiased estimator.

That is all for today’s lecture.


