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Properties of MLES - II

Form now, there are certain other properties of the maximum like fluid estimators like

invariance which make it very attractive. What is the meaning of invariance? Suppose,

we are able to obtain as a natural parameters theta, theta 1, theta 2 etcetera say suppose

we have a one parameter problem and we have theta. So, we obtain the MLE of theta;

however,  suppose  in  the  given  problem it  may  be  required  that  theta  square  is  the

quantity  of  interest  1  by theta  is  a  quantity  of interest,  log of theta  is  a quantity  of

interest, in that case we can substitute the maximum likelihood estimator in that function.

In general, if we are considering function g theta, then g theta hat ML will be the actual

MLE of g theta.
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Now, this property I will be proving in two forms; invariance of MLE. Firstly, I will

prove it for the one-one functions and then, actually I will give the general proof which is

true for any function.



Let, phi be g theta where g is a one to one function, then phi hat ML is equal to g of theta

hat ML. Let us look at the proof of this. So, suppose my parameter spaced for theta is

capital script theta and phi we wrote as capital phi and this is actually the g theta space,

that is the set of all g theta values as theta varies over a script theta. Let L theta and L star

phi  denote  the  likelihood  functions  corresponding  to  theta  and  phi  respectively.

Essentially, they are the same function because l theta is obtained as the joint distribution

written at the point theta.

Now, in that you substitute because g theta is equal to phi. So, if we substitute in terms of

phi here in that function, then that will be a function of phi and we denoted by L star. So,

they are actually same functions, but written in as functions of different variables. Now,

any maximum likelihood estimator of phi should satisfy L star phi hat ML greater than or

equal to L star phi for all phi belonging to a script phi or L star phi hat ML greater than or

equal to L g inverse phi that is equal to L theta. Now, L theta had ML it is greater than or

equal to L theta for all theta belonging to theta a script theta. 

So, for phi hat ML equal to g of theta hat ML, we get l star phi hat ML is equal to L star

g of theta hat ML that is equal to L g inverse g of theta hat ML that is equal to L of theta

hat ML which is greater than or equal to L theta that is equal to L star phi for all phi.
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So, you can say that phi hat ML is equal to g of theta hat ML is the MLE of phi is equal

to  g theta.  Now, naturally  this  result  is  true  we have  proved for  g  being  a  one-one



function. However, even if we have any function the same invariance property can be

used as a justification for this was provided by Zahna 1967, I will state the result without

proof here.
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Let p theta belonging to script theta be a family of probability distributions and let L

theta be the likelihood function. Suppose, theta is a subset of k dimensional Euclidean

space and theta star be a function from R k to say R p where p will be less than or equal

to k. Also, we assume that the range of theta star, this is an interval in R p. So, if theta hat

is an MLE of theta, then g of theta hat is MLE of. The proof of this requires that for

every value of a g theta, if there are several values which will lead to the same value

because now we the function can be a an even function, then the likelihood function for

theta star is defined as the maximum of all those values. 

In the case of one to one transformation, what we have done is L theta is L of g inverse

phi which we call L star phi whereas, in the case of an even function there can be several

values corresponding to one value of phi, in this  case theta star  there can be several

values.  So,  what  we will  do  that  for  all  those  values  we take  the  maximum of  the

likelihood function and then we maximize that.

So, when we associate maximum for each inverse image, what will happen is that, we

are actually  creating a one to one function and therefore,  this  theorem is once again

applicable. However, I am just keeping the proof here for the details we can look at the



paper  by  Zahna  in  1967.  I  will  now  give  some  more  asymptotic  properties  of  the

maximum likelihood estimators. So, let me call it large sample properties or asymptotic

properties of the maximum likelihood estimator.

Now, these properties are true under certain conditions which we usually call regularity

conditions. Now, these conditions were initially given by Cramer and these are usually

called Cramer Rao or, Fisher Cramer Rao regularity conditions. So, I will just call  it

regularity conditions.

So, in general we are considering a class of probability distributions. Now, they may

have probability densities or probability mass functions. So, let me write that the density

function or the mass function, this is a general notation I am using theta belongs to a

script theta, this is an open interval in real line, then we have the following regularity

assumptions. The assumptions are as follows.

That the up to the third order derivative exists and this should be for all theta; however, it

is enough if we assume it in a neighborhood of the solution. Suppose, we know that the

solution exists around theta naught, then if we assume this derivative existing and in

interval or in a neighborhood of theta naught, then it is enough; less than delta for some

delta positive.

The second condition is that expectation of del log f by del theta at theta is equal to theta

naught that is equal to 0, expectation of theta naught del by del theta log of f x theta at

theta is equal to theta naught whole square that is positive.
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The third condition is that the third derivative of the density or the mass function is

bounded  in  a  neighborhood  of  theta  naught  and  this  function  itself  is  having  finite

expectation a bounded expectation at any point in the interval theta naught minus delta to

theta  naught  plus  delta.  So,  if  we  are  considering  X  1,  X 2,  X  n  independent  and

identically distributed as x and observed values are then the likelihood equation is the log

likelihood is and the likelihood equation is d l by d theta is equal to sigma f prime x i

theta.  Now, here prime means  derivative  with respect  to  theta,  this  is  the likelihood

equation.
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Let us look at the conditions once again whatever assumptions we have made here f can

be pdf or pmf theta belongs to the parameter space which is an open interval in the real

line, we are assuming the derivative up to the third order exist. And, the assumption is at

least for an interval in the neighborhood of the solution and then expectation of the first

order derivative at theta is equal to theta naught was to vanish the expectation of first

derivative square that  should be positive.  In fact,  we have defined earlier  this  as the

information function.

(Refer Slide Time: 13:48)

If we look at this one expectation of del log L by del theta whole square, this is the called

fishers  information  major  Fisher’s  information  measure.  We will  talk  more  about  it

somewhat later third assumption is that the third area third order derivative is bounded

by an integrable function. Now, under these conditions, we have under these assumptions

we have the following large sample results for the maximum likelihood estimator.

I will stated it in the form of theorems without proof.
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The first result says that the likelihood equation has a root with probability 1 as n tends

to infinity and the root converges to theta naught with probability 1 under theta naught.

So,  this  says  that  the likelihood equation  has  a  root  with probability  1 and the root

converges to theta  not with probability  1.  So, this  is a very important  result  and the

second one says that the let theta bar be a consistent root of the likelihood equation, then

square root n theta bar minus theta naught into I theta naught the information measure we

have defined minus 1 by n d l by d theta naught, this converges to 0 with probability 1.

Now, what does it mean that square root n theta bar minus theta naught I theta naught

minus 1 by n d l by d theta naught. This result is something like that the root of the

likelihood equation that is the maximum likelihood estimator is asymptotically efficient

because what term we are getting theta bar minus theta naught, you see if you take it to

this side 1 by n d l by d theta naught divided by I theta naught. And, the asymptotic

distribution of root n theta bar minus theta naught is normal 0 1 by I theta naught that is

as n becomes large, the distribution of root and theta bar minus theta naught converges to

that of a normal distribution with mean 0 and variance 1 by I theta naught, where I theta

naught is the Fisher’s information measure.

The proofs of these results  are  not  very difficult  actually  they use the laws of large

numbers and the central limit theorem at various points. I am skipping the proof here and

what is more important is that this is true under fairly general conditions for example, the



assumptions  that  I  have  stated  now  these  assumptions  are  true  for  say  binomial

distribution,  say for Poisson distribution,  say for normal  distribution,  say for gamma

distribution;  that  means,  there  is  a  large  class  of  distributions  particularly  the

distributions  in  the  exponential  family  which  satisfy  these  conditions  Gaussian

distribution is not in the exponential family, but even that also satisfies this condition. So,

there is a fairly large class of distributions and densities which will actually satisfy this

property.

So, under fairly general conditions we can say that the likelihood equation has a solution,

the solution is consistent with probability 1; that means, it converges to the true value

with probability one moreover the asymptotic distribution is normal and it is also second

order  efficients  in  the sense of  Rao. So,  that  makes  the use of  likelihood maximum

likelihood estimators a fairly important practice in the statistical theory.

See this property which I have written at the end that is a square root n theta bar minus

theta  naught  or  say  square  root  and  theta  bar  minus  theta  naught  is  asymptotically

normal.  This  is  also  known  as  consistent  as  asymptotic  normal  property  or  kind

estimator. So,  if  an estimator  is  consistent  as  well  as  it  is  asymptotic  distribution  is

normal.  So,  naturally  these  are  having  some  desirable  properties,  we  also  say  best

asymptotically  normal  estimator  that  is  ban  estimator  so,  can  ban.  So,  under  certain

conditions such estimator have exist and maximum likelihood estimators are more likely

to satisfy these properties. I will be completing this discussion now.


