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Lecture – 13
Properties of MLES - I

In the last lectures, I have derived the form of the maximum likelihood estimators for

various probability models. I have demonstrated how the role of likelihood is there in

determining the final form of the estimator. Suppose, there is a prior information, then it

has a effect. Now, in today’s lecture, I will spend some time on discussing important

properties of the maximum likelihood estimators. First of all, we note that see various

problems we have done and in most of those problems you have got a value of the

maximum likelihood estimator; that means, there is a function which is corresponding to

the estimator. However, that is not necessarily the case; sometimes we may have a non

uniqueness.

(Refer Slide Time: 01:06)

So, let me give an example of that non uniqueness of the MLE. Let me discuss one

example of that let we have a sample X 1, X 2 X n from a uniform distribution on the

interval theta minus a 2 theta plus a where theta is a real number and a is a positive

number, here a is a known constant. So, the problem is here to estimate the parameter

theta of this uniform distribution; that means, the spread is from theta minus a to theta



plus a. Since, theta is unknown; we do not know the starting and the end point of the

spread.

So,  let  us  consider  the  likelihood  function.  The  likelihood  function  is  now here  the

density function is 1 by 2 a. So, if I consider the joint distribution of X 1, X 2 X n, it will

become 1 by 2 a to the power n and each of the X i s lies from theta minus a 2 theta plus

a. Therefore, we can summarize this information in the form that theta minus a less than

or equal to x 1 and so on, less than or equal to x n less than or equal to theta plus a. Let

me put it here closed interval because I am including the endpoints here it is equal to 0

elsewhere.

Naturally, you can see that the maximum value of the likelihood function is 1 by 2 a to

the power n because, this is a constant value here at other points it is 0. Now, this is

satisfied then this inequality holds true. Therefore, let us see the optimal range of theta

for which this value is attained. So, L is maximum when theta minus a is less than or

equal to x 1 or you can say that theta is less than or equal to x 1 plus a and theta plus a is

greater than or equal to x n or theta is greater than or equal to x n minus a.

Naturally, if I choose any value of theta in the interval x n minus a to x 1 plus a that will

be the maximum likelihood estimator. So, any value of between x n minus a to x 1 plus a

is a maximum likelihood estimator of theta. So, this is an example where the maximum

likelihood estimator is not unique.

However, we may choose the for example, the midpoint of this that will be the x 1 plus x

n by 2. We may choose the midpoint that is x 1 plus x n by 2 as the MLE.

Now, another feature which we noticed in the various problems that we have done that in

most of the cases, we got it a very nice function. For example, we got it as x bar 1 by n

sigma x i minus x bar whole square the median, the largest or the smallest etcetera. In

most of these cases the maximum likelihood estimator is in a closed form and also a

mathematically elegant form, but even that is not necessary.
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Let me take another example where we do not get a nice analytic form, MLE need not be

in a nice analytic form. Let me take one example here. Let X 1, X 2 x n be a random

sample from a normal distribution with mean, theta and variance theta square.

So, naturally here theta is a positive parameter here, the likelihood function. So, here

your variance is actually the square of the mean. So, there is an interrelationship here.

So, the problem reduces to one parameter. So, if we consider the likelihood function, it is

a joint distribution 1 by theta root 2 pi to the power n minus e to the power minus 1 by 2

theta square sigma x i minus theta whole square and here each of the xi is on the real line

whereas, theta is positive.

So, if we consider the log likelihood that is equal to minus n log theta minus n by 2 log 2

pi minus sigma x i minus theta whole square divided by 2 theta square. There is naturally

a difference from the situation when we had considered mu sigma square because then

we had two parameters and we had considered the maximization with respect to both of

them. Now, since mu has been replaced by theta, so, this is a consolidated function of

theta  that  is  coming  here  and  we  have  to  maximize  this  with  respect  to  theta,  but

nevertheless  this  is a differentiable  function and therefore,  we can think of the usual

calculus procedure.

Let us look at d l by d theta. So, that is equal to minus n by theta plus sigma x i minus

theta divided by theta square plus sigma x i minus theta whole square divided by theta



cube because the derivative of 1 by theta square will be minus 2 by theta cube. So, that

simplifies to this. This term we can write as sigma x i minus theta square plus theta

sigma x i minus theta minus n theta square divided by theta cube. 

Now, we can expand these terms here, you will get 1 by theta cube sigma xi square

minus twice. Now, you get 2 theta x i when you put summation here it becomes sigma x i

which we can write as n x bar. So, minus 2 n theta x bar, then you have theta sigma x i

again which you can we can write as n x bar. So, this becomes n theta x bar minus theta

square and this is summation here. So, minus n theta square minus n theta square and of

course, there was another term here which we missed here, theta square here. So, n theta

square will come here with a plus sign plus n theta square. 

So, naturally this term cancels out and here one of the n theta x bar cancels out, we get

here 1 by theta cube sigma x i square minus n theta x bar minus n theta square. Now, we

can consider the if we put this equal to 0, then this is nothing but a quadratic equation in

theta which will have two roots because the denominator is theta cube which is always

positive.
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So, we can look at this d l by d theta is equal to 0 gives theta is equal to. So, we can write

this equation the sigma x i square term is coming we can take out n here. So, this we can

write as minus n by theta cube theta square plus theta x bar minus 1 by n sigma x i

square, I will use the notation alpha 2. This alpha 2 notation we have introduced in the



method of moments. This is the second sample moment, this alpha 2 is 1 by n sigma x i

square.

So, if we put this equal to 0 we can straightforwardly apply the b square minus 4 a c

formula. So, we get theta is equal to minus x bar plus minus square root x bar square plus

4 alpha 2 divided by 2. So, naturally there are two solutions and we have to see the

increasing and the decreasing nature of this. So, we can express d l by d theta as equal to

minus n by theta cube theta minus, let me call it theta 1 hat into theta minus theta 2 hat

where I am taking theta 1 hat to be the solution with the negative that is minus x bar

minus square root x bar square plus 4 alpha 2 divided by 2 and theta 2 hat is equal to

minus x bar plus square root x bar square plus 4 alpha 2 pi 2. 

Now, let us look at the sin scheme of this. This term will be negative if theta is less than

theta 1 hat or theta is greater than theta 2 hat because if theta is less than theta 1 hat, this

term is negative here we can see that theta 1 hat is less than theta 2 hat. So, if we are

considering theta 1 hat and theta 2 hat here. So, if theta is below theta 1 hat and theta to

hat, then both of these terms are negative their product is positive. So, this entire term dl

by d theta will become negative. Similarly, if theta is greater than theta 2 hat then this

term is positive as well as this term is positive. So, the overall term will become negative

and this will become positive, if theta 1 hat is less than theta is less than theta 2 hat.

Therefore,  we can  look at  the  behavior  of  the  likelihood  function  as  theta  varies  of

course, we can actually plot it here theta 1 hat will be somewhere here because both the

terms are negative here, minus x bar of course, minus x bar could be because x bar can

be  negative  or  positive;  so,  but  this  term is  certainly  negative  and  it  is  bigger.  So,

naturally I think this will become negative whereas, theta 2 hat is going to be positive.

The function is decreasing before theta less than theta 1 hat. So, something like this and

then it will between theta 1 hat to theta 2 hat it increases and from theta 2 hat onwards

again it will start decreasing. So, you can see that at theta is equal to theta 2 hat, we get a

maximizing value. So, we can see that l theta is maximized at theta is equal to theta 2 hat

and another point which we notice here that this is actually a positive value and from our

model that we have considered here, theta should be positive. So, it is natural that our

maximum likelihood estimator conforms to that range here and it is happening here.



So, the maximum likelihood estimator is X bar plus square root X bar square plus 4

alpha 2 by 2. Naturally, you can see that the form of the maximum likelihood estimator is

not in a nice analytic form. In fact, you are getting a square root. So, once again taking

expectations etcetera checking whether it is unbiased and all those things will be quite

complicated. So, the statement that maximum likelihood estimator need not be in a nice

analytic form.

We may have even more difficult  situation  that  is  we may not  be able  to  solve the

likelihood equation. In this case, although solution is coming it is not in a good form, but

there may be a situation where we may not be able to solve it explicitly. 
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So, let me give an example of that situation also MLE may not be in a closed form. Let

us consider say a random sample from a gamma distribution with parameter say r and

lambda. Now, there can be two cases as we have seen earlier; r could be known, lambda

may be unknown and r could be unknown and lambda may be known or both may be

unknown. Let us consider the case lambda is known and r is unknown. If lambda is

known, since it is occurring at a scale parameter we may take it to be 1.

Now, let us consider the likelihood function. So, likelihood function will be a function of

r now lambda to the power r by r gamma r e to the power minus lambda x i x i to the

power r minus 1 product i is equal to 1 to n. So, this if you take lambda to the power nr

by gamma r to the power n e to the power minus lambda sigma xi product xi to the



power r minus 1. Let us take the log of this that is equal to n r log lambda plus minus n

log gamma r minus lambda sigma x i plus r minus 1 log of product x i. Now, let us put

lambda is  equal  to 1 here,  then this  term becomes much simpler  this  particular  term

vanishes here you get minus n log of gamma r minus sigma x i plus r minus 1 sigma log

of xi.
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Now, if we treat it as a function of r, then derivative of this with respect to r will give me

minus n by gamma r into gamma prime r. This is known as diagram of function minus

this will become 0 plus sigma log of x i. So, this if you put 0 gamma prime r by gamma r,

this is known as Euler’s diagram function. So, it is not a very nice analytic function and

you cannot solve that this is equal to what will be the solution. You will have to use a

numerical method such as say Newton Raphson method or any other numerical method

to solve this non-linear equation. 

Now, in the cases when the explicit solution of the likelihood equation is not possible, a

modification to the Newton Raphson method was suggested by Fisher and this is known

as  the  method  of  scoring,  the  method  of  scoring  for  finding  solutions  to  likelihood

equations.
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So, the method is briefly as follows.

We are actually looking at del by del theta log of L is equal to 0, we are trying to solve

this equation. So, in case the solution is existing, there is no problem; however, there

may be cases when the solution exists but we are not able to get exact analytic form. So,

what we will do, consider we want to solve the likelihood equation del log L by del theta

is equal to 0 and suppose the exact solution lies in the neighborhood of theta naught or

you can say it lies a so, it could be theta naught or it could we can assume that it is near

about theta naught.

Let the exact solution lie in a neighborhood of a value say theta naught. Now, once again

here we will use the techniques of analysis to determine. So, for example, if we want to

find out the roots of an in general non-linear equation then what do we do? We study the

behavior of the function, for example, if we are saying f x is equal to 0, then we look at

the behavior of the function we try to locate the roots where they may be lying and then

we  apply  any  numerical  method.  Because  generally,  the  initial  approximation  is

important  for  example,  in  Newton  Raphson  method  in  one  initial  approximation  is

required.  If  we  are  using  say  bisection  method,  then  two  initial  approximations  are

required such that both of them are on the either side of the solution.

So, similarly here we guess the initial root say theta naught and let us consider expansion

expanding say del log L by del theta in Taylor series around theta naught. Now, once we



say Taylor series expansion, we are making the assumption that the derivatives of this

exist.  So,  let  us  consider  only  up  to  second  order,  up  to  second  order  terms  and

neglecting  third  and  higher  order  derivatives.  So,  basically,  it  means  the  derivative

evaluated  at  theta  naught;  similarly,  here  it  means  the  derivative  evaluated  at  theta

naught, the second derivative. Now, this term what Fisher suggested we approximate by;

that means, in place of this term we have written expectation.  Now, there are certain

justifications for this. 

For example this likelihood function is the joint distribution. So, when we are taking log

it is becoming summation here. So, this becomes summation term here. Now, we know

by the laws of large numbers that if I have X 1, X 2 X n a sequence of IID random

variables then X bar converges to expectation X bar almost surely that is with probability

1; that means, if n is large enough, this approximation is all right. So, we have replaced

this term by it is expectation and this expect expectation of this with a minus sign is

known as the Fisher’s information.  So, this is equal to del log L by del theta naught

minus now this theta point we consider in the neighborhood of theta. So, let us write it as

delta  theta.  So,  this  is  delta  theta  and  minus  expectation  this  is  called  Fisher’s

information at the point theta naught.
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So, now from here what we get, the equation yields let me call it equation number 1; the

equation 1 yields delta theta is equal to delta by delta theta naught log L divided by I



theta naught because, what we are going to do, we are having delta log L by delta theta is

equal to 0; that means, we are putting this term is equal to 0 here. So, if we put this 0

then we can simplify this and we get the first approximation delta theta as del by del

theta not log L by I theta naught.

So, we take the next iterate as theta naught plus this delta theta and continue. So, theta 2

will then again become where delta theta will be evaluated at theta 1 and so on. So,

continue till desired level of accuracy is achieved. So, this modified method it is known

as Fisher Newton Raphson method or Fisher scoring method, I will explain it through

one  example.  Let  us  consider  say  we have  observations  from a  Cauchy  distribution

where x is any real number and theta is any real parameter. Suppose, observations 210,

195, 190, 199, 198, 202, 185 and 215; eight observations are available and we want to

determine the maximum likelihood estimator of theta based on this sample.

Now, in general if we write X 1, X 2, X n then what will be the likelihood function in the

case of if we denote the observations by say X 1, X 2, X n, then the likelihood function is

product i is equal to 1 to n 1 by pi 1 plus x i minus theta square.
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So, if you take log of this, we will get sigma log of 1 by pi 1 plus x i minus theta square

which we can write as minus n log pi minus sigma log of 1 plus xi minus theta whole

square. So, if we look at the likelihood equation, d l by d theta is equal to 0, this is

equivalent to this term will yield 0 if you differentiate and here you will get 1 by 1 plus x



i minus theta square and then derivative of that that will be 2 times x i minus theta with a

minus sign. So, we will get twice sigma xi minus theta divided by 1 plus xi minus theta

square i is equal to 1 to n. 

Now, naturally you can see here this equation you cannot solve for n greater than or

equal to 2 for n is equal to 1 this will give simply theta is equal to x 1 for n is equal to 1,

we get theta hat is equal to x 1. However, for n greater than or equal to 2, it is a non-

linear equation. In fact, even if you write two terms here, then you will get x 1 minus

theta by 1 plus x 1 minus theta square plus x 2 minus theta divided by 1 plus x 2 minus

theta square and obviously, that equation will be having terms up to theta cube in the

numerator. So, in general if I am writing n terms here then n in each of the terms you will

get a square in the denominator. So, if you multiply n minus 1 of them, you will get 2 n

minus 2 and then numerator.

So, this  will  give me a non-linear  equation of degree 2 n minus 1. So, naturally  we

cannot solve this theoretically. Let us apply the method of scoring in this problem. Now,

method of scoring involves as we have seen just now that we should calculate the term

called I theta naught. I theta naught is obtained as minus expectation del 2 log L by del

theta naught square.
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And that is also equal to let me write it here I theta is equal to minus expectation del 2

log L by del theta square. This is also equal to expectation of del log L by del theta whole

square so, one can do it in either way. Let us look at the calculation for this part.
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So, we therefore, apply the method of scoring here. Now, for Cauchy distribution log of f

is equal to minus log of pi minus log of 1 plus x minus theta square. So, del log f by del

theta  is  equal  to  twice  x  minus  theta  divided  by  1  plus  x  minus  theta  square.  So,

expectation of del log f by del theta whole square that is equal to 4 times expectation of x

minus theta square divided by 1 plus x minus theta square whole square. So, we evaluate

this that is equal to 4 times integral x minus theta square divided by 1 plus x minus theta

whole square and whole square of that multiplied by the density function of x and the

density function of that is 1 by pi 1 plus x minus theta square. So, you will get power 3

here and 1 by pi I will write here this is from minus infinity to infinity.

Now, you can easily transform this by putting x minus theta is equal to y. So, you get this

as equal to 4 by pi y square divided by 1 plus y square whole cube d y; easily you can see

that this is an even function. So, this becomes 8 by pi 0 to infinity y square divided by 1

plus y square whole cube d y.

Now, this type of integral is standard we can substitute something like y is equal to tan

theta. So, this will give me 8 by pi 0 to pi by 2 tan square theta sec square theta divided



by sec cube theta sec square theta whole cube d theta and that is equal to 8 by pi 0 to pi

by 2 sin square theta cos square theta d theta and that is equal to half. 

So, I, so, this you can see it is free from theta, so information at the point theta naught

that will become n by 2. Now, the function that you need to calculate for the scoring

method is delta theta. Delta theta is equal to del by del theta naught log of theta divided

by I of theta naught. So, if we look at this term here delta theta that will be equal to 4 by

n sigma x i minus theta divided by 1 plus x i minus theta whole square I is equal to 1 to

n.

Now, the question is that what should be the initial approximation now in the Cauchy

distribution. The sample mean is inconsistent because we have seen the distribution of

the sample mean is the same of same as that of the initial  observation x i  each x i;

however, we can see that sample median will be a consistent estimator here. Now, from

the given data of this the middle observation will turn out to be two middle observations

are there that is 198 and 199 because there are if you arrange it  in the ascending or

descending order, then these are the two middle observations. So, the midpoint of that

can be considered as the initial approximation.
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So, we may take; we may take theta naught is equal to 198.5 the sample median as an

initial approximation. Now, for each theta, so if I take theta naught here 198.5 here, we

substitute n is equal to 8 and we have the data available to us x is in the form of these



values 210, 195 etcetera. So, if you substitute these values from the initial approximation

we can get the successive approximations. The successive approximations are obtained

as  theta  1  is  equal  to  198.4784887  you  have  done  up  to  7  decimal  places;  next

approximation  gives  198.4656064,  theta  3  is  198.4570831;  theta  4  is  equal  to

198.4527974 and so on.

If you look at 14, that is 198.4464555 and theta 15 is equal to 198.4464509. So, it is

accurate  up  to  five  decimal  places.  So,  we  may  take  we  may  take  the  solution  as

198.4464509. Of course, you can see that this is not much different from the sample

median because,  the sample median was 198.5.  So,  this  method of a  scoring can be

applied to various cases whenever we are getting a non-linear equation for which the

solution is not in a tractable form.


