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Yesterday, we  have  discussed  in  detail  various  models;  we  have  various  probability

models, and how to find out the maximum likelihood estimator for that. We have seen

here that the effect of changing the parameter space or effect of the prior information on

the  parameter  space  plays  an  important  role  in  the  maximum likelihood  estimation,

which makes it different from other methods such as unbiased estimation or the method

of moment’s estimation. So, today I will explain this method with the help of several

other  examples,  and we will  discuss certain  important  large sample properties  of the

maximum likelihood estimators.
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Let me start with the a couple of examples on discrete distributions . So, let us consider

say a discrete uniform distribution. Let X 1, X 2, X n be a random sample from a discrete

uniform distribution.  So,  a  discrete  uniform distribution  is  usually  concentrated  on n

points,  and  normally  we  take  the  points  from  1  to  n,  and  each  one  will  be  equal

probability. So, we can consider the probability mass function as follows with probability

mass function given by, so we write p X k is equal to 1 by n, where k can take values 1 to



n. Now, in this case, there may not be any inference problem if we know on how many

points the distribution is concentrated. The inference problem arises if we do not know

how many points are there. So, this type of situation may arise where we know that each

possibilities with equal probability, but how many possibilities are there that may not be

known. So, in that case we may be interested in estimating that number.

So, we are assuming here that n is a positive unknown integer. So, we proceed as before

we write down the likelihood function which is the glint distribution of X 1, X 2, X n.

So, we consider points, X 1 is equal to K 1; X 2 is equal to K 2; X n is equal to k n. So,

we can write it in the following fashion the likelihood function can be written as L N.

And as I mentioned we are considering the points K 1, K 2, K n which are the observed

values of the random variables X 1, X 2, X n respectively, so that is equal to 1 by N to

the power n where each of the i s can take values 1 to n for i is equal to 1 to n.

Now, the problem here is to maximize this function with respect to N as n is appearing in

the denominator it will be the minimum value of n. So, this will be maximized when N is

taking the minimum value. Now, what is the minimum value of n that is possible here?

So, this region we can write it in a more appropriate fashion that K 1 suppose I order

them K 2 up to K n, then the region can be written as 1 less than or equal to K 1 less than

or equal to K 2 less than or equal to K N less than or equal to N. So, from here it is clear

that the minimum value of N that is possible is the maximum value of K 1, K 2, K n,

where K 1, K 2, K n are the ordered values of K 1, K 2, K n.

So, L is maximized, when N is minimum and it is attained when N is equal to K n. Now,

K n corresponds to the largest order statistics here. So, we conclude that the maximum

likelihood estimator of N is X n. You can notice the analogy with the continuous uniform

distribution  which  we  discussed  in  the  previous  class.  In  the  continuous  uniform

distribution on the interval 0 to theta, the maximum likelihood estimator for theta was

also the largest order statistics that is X n. So, in the discrete uniform case also the same

thing is happening; the only different here is that here Xi’s are taking positive integral

values here .
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Let us take another important discrete distribution that is hypergeometric distribution .

Now, a hypergeometric distribution is usually considered in the following fashion that

there  is  a  large  population  of  size  N;  this  is  the  size  of  the  population.  Now, this

population is divided into two parts let us say category A and category B. The entire

population  for example,  we may divide a  employees  in a of an organization by two

categories that is those who are in the supervisory position and those who are in the

working conditions in the that is there they are the lower level employees and the higher

level employees. We may divide the patients into two groups; say those who are having

communicable diseases, those who do not have communicable diseases. We may divide a

section of a students into the students who are following engineering discipline, and the

others who are studying say medical discipline.

So,  we  have  a  large  population  and  the  population  size  of  one  category  is  N,  and

therefore, the other category population has N minus M numbers. Suppose, we random

we take a random sample; a random sample of size small n is taken from the population.

And let X denote the number of items, items may this could be persons anything of type

category A in the sample. Then the probability distribution of X is given by M c x N

minus c M minus M c n minus x divided by N c n.

Now, obviously, this random variable X, it can take values from 0, 1 to n, because in a

random sample  of  size  n  you may  have none  of  this  category, and all  of  the  other



category, one of one category, n minus 1 of another category and so on. However, this is

also subject to the restrictions of the total elements of each type, and therefore, we may

write the restrictions in a more strict sense as that is x is a integer between maximum of 0

and n minus N plus M to minimum of n, M.

Now, when we look at this probability model, there can be two different cases one case

could be that the total population size is unknown. Now, this type of situation arises for

example, in estimating a say we have a lake and a company which is involved in the

fishing, it may like to estimate that how much of fish amount will be available in the lake

if they start the fishing operations. Now, obviously, one cannot take out the water from

the lake and count the how many fish will be there.

So, we assume that the size of the population that is capital N is unknown. Now, one may

conduct a the following experiment which is known as capture recapture technique we

take a random sample of size capital N from the lake the fish that are taken out they are

tagged, that means, they are mart with something then they are shifted back to the lake.

So, that they get mixed up with the entire population of the fish. Later on we consider a

random sample of size N from the fish once again from the lake we again take a random

sample of size N. Now, out of that you look at how many of them are tagged and how

many of them are untagged. So, now this capital M is known to you and capital N is not

known to us. And the problem will come how to estimate capital N.

Similarly, there can be another problem where the total population size is known. We

may like to estimate how many people are suffering from a different disease or a certain

virus for example, how many people are infected with HIV virus. In that case, we again

take a sample of size N. And in that sample X will denote the number of people who are

actually infected with the virus and then on the basis of that we estimate N. So, in this

case capital N may be known, but capital M is unknown.

So, when we consider this hypergeometric model, there are two cases. So, case one is

that M is known, but N is unknown. So, in this  case we have to find the maximum

likelihood estimator of N. In order to do that, we write the likelihood function, now in

this case the observation is the sample of size N has been taken and X is the number of

items of type category A. So, this is the recorded item. So, this function itself denotes the



likelihood function in this particular case, because this is the probability mass function of

the observation here.
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So, the likelihood function is let me call it L N here, so that is equal to M c x N minus M

c N minus x N c n. And we need to maximize this with respect to capital N. Now, the

methods that I mentioned in the previous examples cannot be directly implemented here.

The  main  reason  is  that  here  N  is  an  integer.  So,  we  cannot  apply  differentiation

procedure, taking log etcetera. So, we carry out a different analysis. Let us write down

we try to see the increasing or decreasing nature of this function in a straight forward

fashion.

Let us consider for example, the value of the likelihood function at N, and the value of

the likelihood function of N minus 1 . So, this is M c x c N minus M c n minus x divided

by N c n, and then this whole thing is divided by M c x N minus 1 minus M c n minus x

divided by N minus 1 c n. Ah We may expand the factorials here. So, you will get M

factorial divided by x factorial.  So, this entire thing comes out to be like M factorial

divided by x factorial M minus x factorial, then we have N minus M factorial divided by

n minus x factorial, then N minus M minus n plus x factorial .

This whole thing is then divided by these terms. So, M factorial x factorial into M minus

x factorial, then we have N minus 1 minus M factorial n minus x factorial, and then n

minus 1 minus M minus n plus x factorial . Then further we have n minus and then we



had this N c n and n minus 1 c n. So, we write that also N factorial n factorial N minus n

factorial.  And in a similar way this will be n minus 1 factorial n factorial N minus 1

minus n factorial.  So, it is easy that one can simplify these terms and we get it as N

minus n into N minus M divided by N into N minus M minus n plus x.

Now, you notice that this is greater than 1, if N is less than n M by x; and it is less than 1,

if N is greater than n M by x. Now, obviously, you can see N is taking integer values

from 1, 2 and so on. Now, this ratio that is L N x divided by L N minus 1 x. So, what we

are observing here is that if I increase N, if I from N minus 1 to N if I go, then this ratio

is greater; that means, it is an increasing function of N when N is less than n M by x. 

And when N is bigger than n M by x, then this value starts decreasing therefore, you can

say that this function increases till this and then decreases. Therefore, the maximum of L

N function is achieved when N is equal to n M by x. Now, naturally n M by x need not

be an integer  although x,  N and M are integers,  but  this  expression need not  be an

integer. So, we may take the integral portion of n M by x as the maximum likelihood

estimator for N.
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So, we observe that the L function achieves its maximum when N is equal to n M by x.

As n M by x need not be an integer, we take n M by x integral portion that is the largest

integer less than or equal to n M by x as the maximum likelihood estimator of N. Now,



let us take up the other case when M is unknown M is unknown and N is known, so here

we want to find out the maximum likelihood estimator of M.

Now, once  again  if  you  consider  this  likelihood  function  here,  I  wrote  here  it  as  a

function of N, because this is coming from the probability mass function of x, here M

and N both are involved. Now, if N is known and M is unknown, I will consider the

likelihood function as a function of N, so the likelihood function will become although it

will be the same expression, it will be written as L M, x that we call it L star, so this is M

c x N minus M c n minus x.

Now, as before we have to consider the maximization of this with respect to M. Now, M

is an integer and the factorials are involved here. Therefore, one cannot apply the usual

methods of analysis such as differentiation etcetera. Rather, we try to see the behavior of

this in a straight forward fashion.

So, once again we write L star M, x divided by L star M minus 1 x. Now, that is equal to

M c x N minus M c n minus x, then we write this ratio N c n will be same, so that will

cancelled out, and we will get M minus 1 c x N minus M plus 1 c n minus x. Now, as

before we can simplify this and the terms turns out to be M into N minus M plus 1 minus

n plus x divided by N minus M plus 1 into M minus x. Now, once again we observe that

this ratio let me call it say alpha x. 
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So, if we observe this ratio, alpha x is greater than 1 if M is less than N plus 1 by n x, and

it is less than 1 if M is greater than N plus 1 by n x. So, we can easily see that the L star

function, it is increasing for M less than N plus 1 by n x, and it will start decreasing for

M greater than this. Therefore, the maximum will be attained at N plus 1 by n x. And

therefore, we can consider the integral part of this as the maximum likelihood estimator

for n.

Clearly, L is the M attains its maximum when M is equal to N plus 1 by n x. As this need

not be an integer, we may take the integral portion of this as the MLE of M. So, here we

have seen that  in the discrete  case the method of obtaining the maximum likelihood

estimators differs little bit. 

We have  not  considered  another  important  distribution,  which  arises  quite  often  in

statistical  modeling  that  there  is  a  exponential  distribution.  Now,  the  exponential

distribution once again has two parameters, it may have a scale parameter, it may have a

location parameter. So, I will consider a general model, and then we look at the solution

here. 

Let X 1, X 2, X n follow exponential  mu, sigma estimation,  when I say this we are

writing down the density function as 1 by sigma e to the power minus x minus mu by

sigma,  where  x is  greater  than mu.  Here  mu can be any real  number,  and sigma is

positive. In the usual study, which are related to reliability and life testing. There mu is

considered as the minimum guarantee time, and there mu will be positive, but in many

other applications it need not be so. So, I am taking the general case here mu can take

any real value, and sigma of course is associated with the average, therefore sigma is

greater than 0.

So, we consider the likelihood function here 1 by sigma to the power n e to the power

minus  sigma x  i  minus  mu by. Now, when we are  dealing  with  the  two  parameter

situation, one may have different cases, it may happen that the minimum guarantee time

is fixed, and therefore we may take it to be 0. It may happen that sigma is fixed and

therefore we may take it to be 1. So, we consider these cases. So, case 1 let us consider

say mu is known, so we may take without laws of generality this to be 0 if that is so, then

we may write the likelihood function. If we substitute mu is equal to 0, the form of this

function becomes much simple.
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And we get it as then the likelihood function can be written as L sigma, x as 1 by sigma

to the power n e to the power minus sigma x i by sigma where each x i will be greater

than 0. So, we write down the large likelihood function that is equal to minus n log of

sigma minus sigma x i by sigma. So, now, this is a straight forward function for sigma

we can consider the derivative with respect to sigma and we get minus n by sigma minus

sigma x i. So, this will become plus sigma x i by sigma square which gives us sigma x i

minus n sigma by sigma square. Obviously you can study its behavior, it will be greater

than 0 if sigma is less than x bar; it will be less than 0 if sigma is greater than x bar.

So, if we consider the plotting of the curve as a function of sigma if we plot L sigma,

now sigma if of course, positive, so this is starting from 0. So, this is increasing till x bar

and thereafter it is decreasing, because our derivative is positive for sigma less than x

bar, and it is less than 0 for sigma greater than x bar. Therefore, easily you can see that

the maximum occurs at x bar. So, the maximum likelihood estimator of sigma turns out

to be the mean of the distribution.

Now, here as before like we have considered in the normal distribution, one may have

additional information about sigma. For example, sigma may be having an upper bound

such as sigma less than or equal to sigma naught or sigma greater than or equal to sigma

naught  or  sigma li[e]  may  lie  in  an  interval.  In  that  case  the  solutions  will  for  the

maximum likelihood estimator will get modified accordingly as we have discussed in the



case of normal distribution. So, I will be skipping those descriptions here. Let us take up

the second case when sigma is known when sigma is known we can take it  to be 1

without loss of generality.
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Now, in this case the likelihood function can be written as so this is now a function of

sigma mu because sigma is known. So, if you look at the form that I discussed here 1 by

sigma to the power n e to the power minus sigma x i minus mu by sigma. So, here if I put

sigma is equal to 1 this term vanishes, and you are left  with only the exponent term

which I can simply write as e to the power n mu minus sigma x i, so e to the power n mu

minus sigma x i. And of course, each x i is greater than mu. And obviously, this is 0 if let

me say elsewhere, each of x i has to be greater than mu in this particular case.

Now, if you look at this function, we have to maximize this with respect to mu here. And

this  n  mu  is  occurring  in  the  exponent  without  any  multiplication  or  any  other

involvement of any other term. So, naturally you can easily see that the maximization

will occur for the maximum value of mu. Now, what is the maximum possible value of

mu? Now, mu is less than each of the xi s therefore, this region can be written as mu less

than x 1 less than x 2 and so on. Therefore, the maximum value of mu can be only x 1.

So, the maximum likelihood estimator of mu is x 1 in this case. We can see that L mu is

maximized when mu takes its maximum value and that is x 1 here. Once again here this

x 1, x 2, x n denote the order statistics of the original observations. So, mu hat ML is



equal  to  the  minimum  of  the  observations  here.  So,  you  have  seen  in  the  uniform

distribution, we got the maximum of the observations. And in this particular case, we are

getting the minimum of the observations.


