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Now, let me take additional cases in the case of normal distribution.
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See here we have taken the case for estimating mu, because sigma square was known.

Now, you may have another identical situation where mu may be known and we may be

interested in the estimation of sigma square.
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So, let us look at this situation then say mu is known. If mu is known, then without loss

of generality we my put mu is equal to 0 because we can always shift all the observations

by mu naught. For example, if I say that mu is known equal to mu naught then we may

put it is equal to 0.

So, now you look at the likelihood function, notice here the problem gets modified in the

maximum  likelihood  estimation  as  soon  as  the  information  about  the  parameters  is

changed. So, the likelihood function is the product of the density functions of x 1, x 2, x

n that is equal to 1 by sigma root 2 pi e to the power minus x i square by 2 sigma square i

is equal to 1 to n.

So, we can write it in a more compact fashion. It becomes equal to 1 by sigma square

sigma to the power n 2 pi to the power n by 2 e to the power minus sigma x i square by 2

sigma square. Notice here that sigma is occurring in the denominator as well as it is

occurring in the denominator of the exponent. Therefore it is beneficial to considered the

log likelihood function that is equal to minus n by 2 log of sigma square minus n by 2 log

of 2 pi minus sigma x i square by 2 sigma square.

So, we considered the likelihood equation that is d l by d sigma square is equal to 0. So,

so when you differentiate this you get minus n by 2 sigma square plus sigma x i square

by twice sigma to the power 4. Notice here that I am considering sigma square as a

parameter, one may be miss lead by considering sigma as a parameter, and then you may



be getting a slightly different derivative here. So, later on we will show that the two

procedures will lead to the same answer, the identical answer. That means, whether you

are considering estimation of sigma are you are considering estimation of sigma square,

it should not lead to contradictory a statements.

Now, we write it in a slightly modified fashion sigma x i square minus n sigma square by

twice sigma to the power four. So, notice here this will be less than 0 if sigma square is

greater than sigma x i square by n; and it is greater than 0 if sigma square is less than

sigma x i square by n.

So, if we look at the plot of the likelihood function, then naturally the likelihood function

is increasing up to sigma x i square by n, because the derivative is positive for sigma

square less than sigma x i square by n. So, it is increasing up to this, and there after it is

decreasing.  So,  the  maximum  occurs  at  sigma  x  i  square  by  n.  So,  the  maximum

likelihood estimator of sigma square is we will write m l just to denote that it  is the

maximum likelihood estimator that is turning out to be 1 by n sigma x i square.

Now, you can look at the variation in place of mu is equal to 0 if we had put mu is equal

to mu naught, then what would have been the modification. Here, we would have got x i

minus mu naught whole square. Therefore when we considered the derivative here we

would have got then increasing and decreasing nature for sigma x i minus mu naught

whole square by n. Thereby, the answer would have been 1 by n sigma x i minus mu

naught whole square.

So, now once again let me show you the effect of the prior information in this. Suppose

on sigma square we have certain information because as you know sigma square is the

variance. Now, the variances are the reciprocal of that is known as the precision. So, the

variability may be known in advance or it may have certain restrictions.
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For example, we may consider say restrictions on sigma square. Say for example, sigma

square may be greater than or equal to sigma naught square. Now, if you consider sigma

square greater than or equal to sigma naught square, then in this case there will be two

cases, because sigma naught square may occur here are sigma naught square may occur

here.

So, let us see. This is sigma x i square by n, and it may happen that sigma naught a

square is here. So, in this case, the maximum occurs at this point. Whereas, if sigma

naught a square occurs here, in that case our region of maximization is here because

sigma square is greater than or equal to sigma naught a square, in that case the maximum

will occur at sigma naught square. So, we conclude that sigma hat square restricted m l is

equal to sigma x i square by n if sigma square if sigma x i square by n is greater than or

equal to sigma naught square. It is equal to sigma naught square if sigma x i square by n

is less than sigma naught a square. That means, we can write it as maximum of sigma x i

square by n and sigma naught square. In a similar way, one may considered the case of

an upper bound on sigma square.
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Let me take sigma square less than or equal to sigma naught square. So, once again if we

look at the plot of the likelihood function, in that case if sigma naught square is occurring

here,  now this  is  our region of maximization.  So, the maximum will  occur at  sigma

naught square, whereas if sigma naught square occurs here, then this is our region of

maximization, and we get the maximum here.

So, in this case the maximum likelihood estimator of sigma square will be minimum of 1

by n sigma x i square sigma naught square. So, the effect of the information or the prior

information about the parameter plays a role in the maximum likelihood estimation. And

that  is  one important  feature which distinguishes the method of maximum likelihood

estimation from various other methods.

The example that I have discussed take into account that the likelihood function or the

log of the likelihood function is a nice are you can say smooth function, because we are

able to differentiate and carry out the usual arguments of the analysis. Now, in certain

situations that may not be possible. 

Let me take up another case say x 1, x 2, x n is a random sample from uniform zero theta

distribution, where theta is the unknown parameter which is certainly positive. We are

interested in the maximum likelihood estimation for theta. If you recollect the method of

moments estimator for theta was 2 x bar, because the mean of the uniform distribution is

theta by 2. So, the first sample movement that is x bar would be the method of moments



estimator for theta by 2, that means, 2 x bar will be the method of moments estimator for

theta. Let us look at the maximum likelihood estimator here.

So, the likelihood function is L theta x that is equal to product of f x i theta i is equal to 1

to n. Now, this we write as 1 by theta to the power n because the density function of the

uniform distribution on the interval 0 to theta it is 1 by theta. So, it will become 1 by

theta to the power n. But at the same time let us not forget that each of the x i’s lies

between 0, and theta this is for i is equal to 1 to n. Now, a we should also write that it is 0

at other places.

Now, a common thing which we have been applying a real that you take the log of this

and differentiate with respect to theta and put equal to 0. Now, in this case what it would

lead to you will get minus n log theta. And if you differentiate will get minus n by theta

which  you  put  equal  to  0  will  give  you  and  absurd  answer.  The  reason  for  these

absurdities that we have not taken care of the full likelihood function; the full likelihood

function takes into account this portion also.
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So,  we  write  it  in  a  slightly  more  compact  fashion  as  follows.  We may  right  the

likelihood function as 1 by theta to the power n 0 less than or x 1 less than or equal to x n

less than or equal to theta. Or we can also write it as 1 by theta to the power n i here we

can say that all the x i s are from 0 to x n and multiplied by x n itself lies between 0 to

theta. 



Now, if  you look at  the maximization of this  with respect  to theta,  now the theta  is

occurring in the denominator, so that means, what is the minimum value of theta the

minimum  possible  value  of  theta  is  x  n  theta  cannot  be  below x  n  because  of  the

observations each of the observations lies between 0 to theta. So, L is maximized when

theta is minimized which is possible when theta is equal to x n.

So, theta hat ML is equal to x n is the maximum likelihood estimator of theta what is the

maximum of the observations. So, you can see here the result is quite different from the

method of moments estimation here, because in the method of moments we would have

got 2 x bar. So, this is certainly different and later on we will study the criteria that which

one should be preferred here; that means, weather MME is better here, or ML is better

here which one should prefer. So, we will discuss about those criteria later on.

This example shows that one should not blindly use the differentiation and put equal to 0,

because this will not give the answer in this particular situation. Similar thing would

occur for example, if I consider two parameter you uniform distribution.
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Suppose,  I  take  a  random sample from uniform theta  1 to  theta  2,  where theta  1 is

certainly less than or equal to theta 2. So, in this particular case, we have two unknown

parameters here. And we considered the maximum likelihood estimation. So, as before

we considered the likelihood function, and this will be it is equal to 0 elsewhere.



Now, you notice the likelihood function here. The likelihood function has theta 2 minus

theta 1 in the denominator  which is the positive quantity. And we are looking at  the

maximization; that means, theta 2 minus theta 1 should be minimum. That means, theta 2

should be minimum and theta 1 should be maximum. Now, if you look at the nature of

the  observations,  all  the  observations  lie  between  theta  1  to  theta  2.  Therefore,  the

minimum  of  the  observations  is  certainly  greater  than  or  equal  to  theta  1.  And  the

maximum  of  the  observations  is  certainly  less  than  or  equal  to  theta  2.  So,  L  is

maximized with respect to theta 1 and theta 2, when theta 2 is minimized, and theta 1

maximized.

So,  in  this  case,  we have  theta  1 hat  maximum likelihood  estimator  is  equal  to  the

minimum of  the  observations.  And theta  2 hat  ML is  equal  to  the  maximum of  the

observations.  And  now  this  is  an  example  where  have  considered  two  parameter

problem.  So,  the  method  of  maximum  likelihood  estimator  can  be  used  for  the

maximization of the likelihood function, when there can be more than one parameter.

And in that case the maximization should be consider with respect to all the parameters.

So, in this case, you can see the simultaneous maximum is occurring.

Now, let us go back to the case of normal distribution that I discussed earlier here I had

taken special cases. If you see carefully, if we consider normal mu sigma square here, I

have taken sigma squared to be known. So, in effect I have reduced a two one parameter

problem. Similarly, if you look at mu is known, then once again the parameter has been

reduced to sigma square alone. So, in effect this problem also reduced to one parameter

problem.  However,  in  general  both  the  parameters  in  a  normal  distribution  maybe

unknown and in that case let us look at the solution.

So, let me discuss in detail. So, we have x 1 x 2 x n a random sample from normal mu

sigma square as before. However, both mu and sigma square are unknown. So, in general

you remember that in the normal distribution the mean parameter may vary from minus

infinity to plus infinity and the variance parameter will be from 0 to infinity. Now, in this

case when we want to find out the maximum likelihood estimator we will like to find out

for both mu and sigma square.
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So, let us write down the likelihood function. So, the likelihood function is L mu sigma

square x. Notice here that this has become function of both mu and sigma square now.

So, this is a joint density function as before in the earlier cases I had substituted special

values of mu were sigma square as the case was. In this case, we will have to write down

the full form of the density function of a normal distribution that is 1 by sigma root 2 pi e

to the power minus 1 by 2 sigma square x i minus mu whole square.

So, we write it in a slightly more compact fashion. This becomes 1 by 2 pi sigma square

to the power n by 2 e to the power that when you take. So, it will become e to the power

minus  sigma  x  i  minus  mu  square  by  twice  sigma  square.  Again  you  observe  the

parameters for which we need the estimators they are occurring in the exponent as well

as they are occurring in the main form here.

So,  it  will  be  beneficial  if  we  considered  the  log  likelihood  as  before.  So,  the  log

likelihood L mu sigma square log of L mu sigma square x that is equal to minus n by 2

log of 2 pi minus n by 2 log of sigma square minus sigma x i minus mu square divided

by twice sigma square. This equation this function involves mu and sigma square two

variables. We need to maximize this with respect to both mu and sigma square.

So, since this function is still very nice a smooth function, so we can still use the direct

calculus method for example by taking the first order derivatives putting them equal to 0.

They are giving us the likelihood equation. The solutions of that will be the points of a



minimum  or  maximum  which  we  can  check  separately  that  they  would  be  actually

leading to the maximization points, they will not be the points of minimum.

So, in this case for example,  we write down the likelihood equations.  The likelihood

equations are del l by del mu is equal to 0 that is sigma x i minus mu by sigma square is

equal to 0 which we can further write because this can be easily simplified sigma square

is in the denominator that would give me mu hat is equal to x bar.
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The other equation is del l by del sigma square is equal to 0 which will give me minus n

by twice sigma square minus plus sigma x i minus mu square by twice sigma to the

power 4 equal to 0. Which will give me sigma square is equal to 1 by n sigma x i minus

mu hat square. Actually the equation is sigma square is equal to 1 by n sigma x i minus

mu square, we substitute the value of mu from the first equation and substitute here.
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So, the maximum likelihood estimator then turn out to be, so the maximum likelihood

estimators of mu and sigma square are mu hat ML is equal to x bar and sigma hat square

ML is equal to 1 by n sigma x i minus x bar whole square. In this case, you may notice at

these are the same as the method of moment estimators for this particular problem. But

once again as I mentioned earlier  a method of maximum likelihood can take care of

many other possibilities also.

For example, we may have say prior information about mu say mu is greater than or

equal to 0. In that case once again we look at the likelihood function here we are getting

n x bar minus mu. So, if you plot the behavior with respect to mu, then the maximum is

occurring at x bar.

But if x bar is greater than 0, I will consider 0 here. And this region is coming. So, the

maximum likelihood estimator will be x bar. However, if 0 occurs on this side and then

we have this portion then the maximum will occur at 0. So, are going as before we know

that mu hat restricted ML will be equal to x bar if x bar is greater than or equal to 0. It

will be equal to 0 if x bar is less than 0, which we can actually write as maximum of x

bar and 0.

Now, if  we use this  in that  case the second equation the solution will  get modified,

because for sigma square the estimator was 1 by n sigma x i minus the estimator of mu.



And if the estimator for mu gets modified, immediately the estimator for sigma square I

will also get modified.

So, in this case, the maximum likelihood estimator of sigma square would be modified to

sigma hat square RML is equal to 1 by n sigma x i minus maximum of x bar 0, which we

can write as 1 by n sigma x I minus x bar whole square if x bar is greater than or equal to

0. And it will become 1 by n sigma x I square if x bar is less than 0. So, the placing of

additional information about the parameter changes the maximum likelihood estimators. 

I will consider a few more examples in the next class and also then we will see there are

certain desirable properties which are basically called the large sample properties that the

maximum  likelihood  estimator  satisfy,  and  because  of  this  the  method  as  wide

applicability among a statisticians. So, in the tomorrow’s class we will consider various

properties  of  the  maximum  likelihood  estimators.  And  then,  we  will  proceed  to

determining the criteria for judging the goodness of the estimators.

Thank you today.


