
Transform Calculus and its Applications in Differential Equations 
Prof. Adrijit Goswami 

Department of Mathematics 
Indian Institute of Technology, Kharagpur 

 
Lecture – 09 

Error Function, Dirac Delta Function and their Laplace Transform 
 

In this lecture, initially, we will go through some useful well-known functions and we will 

evaluate their Laplace transform as well. The first one that we will cover is the Error 

function. 
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The Error function denoted by erfሺݐሻ is defined by  
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and the graph of this function is shown in the slide. Now clearly, at ݐ ൌ 0, the value will 

be equal to 0 i.e., 
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Next we see the value of erfሺ∞ሻ. So, by definition, it will be  
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We substitute ݑ ൌ ݑ݀ ଶ so thatݔ ൌ ݔ݀ ,.i.e ݔ݀ݔ2 ൌ ௗ௨

ଶ√௨
  and the limits of the integration 

will remain unchanged. Then we have, 
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 We can express this as a Gamma function directly. 
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So, the value of the Error function, as ݐ → ∞, is equal to 1. 
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There is another function which we call Complementary Error function denoted by erfୡሺݐሻ 

and it is defined as  
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So, we can break the integral into two parts as: 
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This we can write down as 

erfୡሺݐሻ ൌ erfሺ∞ሻ െ erfሺݐሻ	

ൌ 1 െ erfሺݐሻ. 
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These functions are very useful for solving various kinds of engineering problems. Now 

we evaluate the Laplace transform of erfሺݐሻ. 

ሻሽݐሼerfሺܮ													 ൌ ܮ ቊ
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From the basic definition of Laplace transform we get, 
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Refer the slide above for detailed steps. If  we take ݔ ൅ ௦

ଶ
ൌ  in that case, this will be ,ݑ

converted into  
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 Now, let us see what would be the Laplace transform of erfሺ√ݐሻ. 
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Let, ܨሺݐሻ ൌ erf൫√ݐ൯ ൌ
ଶ
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଴ 	and	ܮሼܨሺݐሻሽ ൌ ݂ሺݏሻ so that from here, directly we 

can say ܨሺ0ሻ ൌ 0 and using Leibniz integral theorem,  

ሻݐᇱሺܨ ൌ
1

ߨ√
ଵିݐ	 ଶ⁄ ݁ି௧. 

Therefore Laplace transform of ܨ′ሺݐሻ is,  
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So, we can write down Laplace transform of ܨ′ሺݐሻ as 

ሻݏሺ݂ݏ					 െ ሺ0ሻܨ ൌ
1

ݏ√ ൅ 1
		

⇒ ݂ሺݏሻ ൌ ሻሽݐሺܨሼܮ ൌ
1

ݏ√ݏ ൅ 1
	

⇒ ൯ൟݐ√൫݂ݎ൛݁ܮ ൌ
1

ݏ√ݏ ൅ 1
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Now, we want to find ܮ൛ݐ erfሺ2√ݐሻൟ. 
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We know that the Laplace transform of erfሺ√ݐሻ is 
ଵ

௦√௦ାଵ
. 

Using the change of scale property, now we can tell  
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Using the theorem on multiplication by power of ݐ, we have 
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This error function is used in various engineering problems as we always come across this 

function. And once we know its Laplace transform, it will be very useful for us to solve 

various problems. 

Next, we have the Unit step function or Heaviside’s unit function defined as 

ݐሺݑ െ ܽሻ ൌ ቄ
0, ݐ ൏ ܽ
1, ݐ ൐ ܽ 

The graphical representation of the function is presented in the lecture slide. 
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We will now evaluate its Laplace transform. Using the definition, we have, 
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There is another important function which appears frequently in various engineering 

problems, which we call the Unit Impulse function or Dirac delta function denoted by 

 .ሻݐఢሺܨ
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The Dirac delta function, whose graph is presented in the above slide, is defined by 

ሻݐఢሺܨ ൌ ൜
1/߳, 0 ൑ ݐ ൑ ߳
0, ݐ ൐ ߳

 

where ߳ ൐ 0. In other sense, we can write as 

ݐఢሺܨ																																									 െ ܽሻ ൌ ൜
1/߳, ܽ ൑ ݐ ൑ ܽ ൅ ߳
0, otherwise

																														ሺ1ሻ 

Clearly, if we integrate the Dirac delta function from 0 to ∞, we get the value as 1 i.e., 

න ሻݐఢሺܨ
ஶ

଴
ݐ݀ ൌ 1. 
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From the figure, we see that whenever ߳ approaches 0, the height approaches to ∞ in such 

a manner that the area of this rectangle always will remain 1. So as ߳ → 0, we write 

ݐఢሺܨ െ ܽሻ ൌ ݐሺߜ െ ܽሻ ൌ ቄ
∞, ݐ ൌ ܽ
0, ݐ ് ܽ 

and	

න ሻݐሺߜ
ஶ

଴
ݐ݀ ൌ 1. 
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For any given function ݂ሺݐሻ, we have, 
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Now, taking limits on both sides as ߳ approaches 0, we have 
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If we put ݂ሺݐሻ ൌ ݁ି௦௧ in (2), then we get 

					න ݁ି௦௧
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଴
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⇒ ݐሺߜሼܮ െ ܽሻሽ ൌ ݁ି௦௔							ሺby	definitionሻ	

⇒ ሻሽݐሺߜሼܮ ൌ 1					for		ܽ ൌ 0. 
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Now, let us see some applications. Say, we want to find out the Laplace transform of 

ሻݐሺܨ ൌ sin ݐ2 . ߜ ቀݐ െ
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Using the definition of Laplace transform, we have, 
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The idea of a very large force acting for a very short duration is a frequent occurrence in 

mechanics. In order to deal with such and similar ideas, Dirac delta function was 

introduced and in mechanics, it is being used very frequently which marks its importance. 

Therefore, it becomes essential to have a knowledge about the Laplace transform of this 

function. 
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We define a rectangular pulse function as 

ሻݐሺܨ ൌ ݄ሾݑ௔ሺݐ െ ܽሻ െ ݐ௕ሺݑ െ ܾሻሿ 



where 0 ൏ ܽ ൏ ܾ and ݄  is a constant. By definition, the Laplace transform of  ܨሺݐሻ is given 

by 

ሻሽݐሺܨሼܮ ൌ න ݁ି௦௧
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Now, we keep ܽ fixed and let ܾ → ܽ, ݄ → ∞, such that 

lim
௕→௔
௛→ஶ
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Then, we have, 
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ቈ
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௕→௔
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ൌ
1
ݏ
.௦௔ି݁ݏ 1															ሺusing		LᇱHospitalᇱs	Ruleሻ	

ൌ ݁ି௦௔. 
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Thank you. 


