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Lecture — 09
Error Function, Dirac Delta Function and their Laplace Transform

In this lecture, initially, we will go through some useful well-known functions and we will

evaluate their Laplace transform as well. The first one that we will cover is the Error

function.
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Error function

Errer function erf(t) is defined by, erf(t) = ‘}; [0' g

erf(0) = % jc? e dx=0

swayam | (8)

The Error function denoted by erf(t) is defined by

2 t
erf(t) = \/_Ef e *"dx
0

and the graph of this function is shown in the slide. Now clearly, at t = 0, the value will

be equal to O i.e.,

2 0 2
erf(0) = \/_Ef e X dx=0.
0
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Next we see the value of erf(c0). So, by definition, it will be
erf(oo) = ifooe"fzdx
Vi o

We substitute u = x?2 so that du = 2xdx i.e., dx = szua and the limits of the integration

will remain unchanged. Then we have,
o)== [ e
erf(co) = — e "u u
v Jo
We can express this as a Gamma function directly.

=)= (1)

So, the value of the Error function, as t — oo, is equal to 1.
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- erf(o0) = } j e~ dx

\/_[ e —a'u (Where, u = x?)

=— e"‘uf'ldu
Al

There is another function which we call Complementary Error function denoted by erf.(t)

and it is defined as

2 (00}
erfo(t) = ﬁ.’- e~ dx.
t
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A it
erf(t) = \/_1?.{ e dx

- %(Fr*‘ dom fr -4 dx]

el

= erf(oc) — erf(t)
=1—ed(t)

So, we can break the integral into two parts as:



erf.(t) = i<fooe"62dx — fte‘xzdx>
¢ Vi \Jo 0

This we can write down as

erf.(t) = erf(oo) — erf(t)
=1 — erf(t).
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These functions are very useful for solving various kinds of engineering problems. Now
we evaluate the Laplace transform of erf(t).

L{erf()} = L {% fo te‘xzdx}

21 2 .
= ——L{e‘x }, (using Integral theorem)

Vs

From the basic definition of Laplace transform we get,

21 2 [° ()
L{erf(t)} = ﬁ;ef e_(x+7) dx
0

Refer the slide above for detailed steps. If we take x +§ = u, in that case, this will be

converted into
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e (1)} = L{% fu te-"crx}

21
= ?'E;L-[e"'z} (Using Integral theorem)

21 (>
=) e
0
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Now, let us see what would be the Laplace transform of erf(v/t).



(Refer Slide Time: 08:18)

Example

Find L{erf(v/)}

Solution:

Let, F(t) = erf (V) = % [o " R and L{F(1)} = f(s)

1
S F(0)=0and F'(t) = Tr'me" (Using Leibniz Integral Rule)
0

A{F(0} = %L{r‘me“}
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Let, F(t) = erf(Vt) = \/% f(;ﬁ e **dx and L{F ()} = f(s) so that from here, directly we

can say F(0) = 0 and using Leibniz integral theorem,
F'(t) = 1 t~1/2et,
Vr

Therefore Laplace transform of F'(t) is,



1
L{F’ _ 1 -1/2,-t] — 1 _ -1/2) _ r (7)
{F'(t)} = \/_E L{t e } = ﬁ fi(s +1) where, fi(s) = L{t } = f

< ()=

So, we can write down Laplace transform of F'(t) as

1
sf(s) —F(0) =m
1
= f(s) =L{F(t)}=s\/s+—1
1
= L{erf(Ve)} = il

(Refer Slide Time: 11:40)
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1
d —
= L{F(0) = ils+1)
(Using First shifting Theorem, where fi(s) = L-[r'm”

= P =L (. gy

M(n+1)
Vrys+1 s )
1 1(3)

VrEEl
=S s—:Tl (. F(0)=0and r(;) o
1

= Uerf(v1)} = T

= sf(s) — F(0) = (Using Differentiation Theorem)

Now, we want to find L{t erf(2vt)}.
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Example

Find L{t erf(2\/f}}
Solution:

We have, L{erf(vt)} =

1
svs+1
= Uer(2vD)} = L{ed (VD) = %

(- Py =

1
svVs+1

We know that the Laplace transform of erf(v/t) is

Using the change of scale property, now we can tell

2

s [s =S\/S+4-
ZJZ+1

L{erf2V)} = L{erf(V4t)} = %
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2
= L{erf(2V1)} = o
L Utef(2V)} = —%L{enf{zxfr}}

(Using Multiplication theorem)

T
=-3l=
= 3548

T s+ 4P

Using the theorem on multiplication by power of t, we have
d
L{t erf(Z\/?)} = — T (L{erf(Z\/f)})

-7
~ ds\sys+4

_ 3s+8
T s2(s 4+ 4)3/7

This error function is used in various engineering problems as we always come across this
function. And once we know its Laplace transform, it will be very useful for us to solve

various problems.
Next, we have the Unit step function or Heaviside’s unit function defined as

0, t<a
”(t_a):{l t>a

The graphical representation of the function is presented in the lecture slide.
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Unit step function or Heaviside's unit function

uft-ay

t

Unit step function or Heaviside's unit function u(t — a) is defined by,

We will now evaluate its Laplace transform. Using the definition, we have,

o)

L{u(t—a)} = J e Stu(t —a)dt
0

a co
=fe‘5t.0dt+f e st 1dt
0 a

e—as
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Lu(t - a)} = f,,m e~tu(t - a)dt
=f;e-”-adt+f.me-"-1dt

=<}
= f e *dt
a

2




There is another important function which appears frequently in various engineering
problems, which we call the Unit Impulse function or Dirac delta function denoted by
E.(t).
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Unit impulse function or Dirac delta function

1
; 0<t<
Impulse function F(t) is defined by, Fe(t) = {e PESEEE here € > 0

0,t>e¢

];m Fe(t)dt =1
swayam S(6H)

The Dirac delta function, whose graph is presented in the above slide, is defined by

1/, 0<t<e
Fe(6) = { 0, t>e€
where € > 0. In other sense, we can write as
_(1/e, ast<a+te
Fe(t—a)= { 0, otherwise M

Clearly, if we integrate the Dirac delta function from 0 to oo, we get the value as 1 i.e.,

waE(t) dt = 1.
0
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From the figure, we see that whenever e approaches 0, the height approaches to oo in such

a manner that the area of this rectangle always will remain 1. So as € — 0, we write

oo, t=a
e ot

and

f ms(t) dt = 1.
0
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Impulse function can be written as,

1

-,a<t<
F(t-a)={¢ bR
0, otherwise

If € =+ 0 then F(t — a) is called Dirac's delta function and defined as,




For any given function f(t), we have,

foof(t)Fe(t —a)dt = fa+6f(t) Lae
0 a €

1
=(a+e— a).f(n).z (Using Mean Value Theorem)

=f@m
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[ " H(O)F(t - a)dt = [ " fe) e
J0 A £

=(@te=a)- 1)+

(Using Mean Value theorem where a < n < a + ¢)
=f(n)

e
LE - e
(%) P o) 4k "
£ Sb)f )Fi.. ) ﬁ.-hﬂ')

Tjsug) fe-®)at = '5'(."')

-]
L=

[y fess § (Y

o

Now, taking limits on both sides as e approaches 0, we have



lim fo F(O) Fu(t — a)dt = lim £ (n)
= [ F@80 - wdt = f@ @)
0
S f ) 8(0)dt = £(0) for a =0,
0
If we put £(t) = et in (2), then we get

j e St§(t — a)dt = e5¢
0

= L{§(t—a)} =e™** (by definition)
= L{6(t)} =1 for a=0.
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im, [0 " HOF(t - a)dt = Y0

= fuw F(t)a(t — a)dt = f(a)

= jlw!(:)é(t)dt = £(0)
0

L{3(t - a)} = ./um e "8(t —a)dt

—sa

(Using property of Dirac's delta function

Now, let us see some applications. Say, we want to find out the Laplace transform of

F(t) =sin2t.8(t—%)+2£t.8(t—%).
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Example
. ; ™o
Find the Laplace transformation of F(t) = sin 2t ﬁ(t - -&-) + :

Solution:

N o Cal T
L{F(t)}_j; e sin2t 6t 4)uru-[l ¢ 2!6(1‘ :

_sfw
E‘{‘[E E] T

t=—

t=
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Using the definition of Laplace transform, we have,

o)

L{F(O)} = fo e~ [sin2¢.6 (¢ - %) + %.5 (t- %)] dt

*© T T (% 1 T
= “Stsin2t.6(t——)dt —f St 5(t——=
J;) e sin ( 4) +2 . e ; ( >

s 1

= [e~Stsin 2t +—[e‘5t—]

[ Je-nt 2 t]t=3
s s

=e 4 +e 2.

)dt
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Dirac Delta Function (unit impulse function)

The idea of a very large force acting for a short time is of frequent occurrence in
Mechanics. To deal with such and similar ideas, Dirac Delta function was introduced.

The idea of a very large force acting for a very short duration is a frequent occurrence in
mechanics. In order to deal with such and similar ideas, Dirac delta function was
introduced and in mechanics, it is being used very frequently which marks its importance.
Therefore, it becomes essential to have a knowledge about the Laplace transform of this
function.
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A rectangular pulse function F(t) is defined by
F(t) = hus(t — a) — up(t = )]s
where 0 < a < band his a constant.

FO = [ " e hlu(t - 2) - e - Bt

<A{er-r)

Now if "a" is fixed, and "b" tends to "a" and h — oo in such a way that
lim h(b—2) =1
]

We define a rectangular pulse function as

F(8) = hlug(t — a) —up(t — b)]



where 0 < a < b and h is a constant. By definition, the Laplace transform of F(t) is given
by

L{F(t)} = f e St hlu,(t —a) —u,(t — b)]dt
0

h
— ;(e—sa _ e—sb)

Now, we keep a fixed and let b — a, h — oo, such that

ll,i_r}} h(b —a) = 1.

h—co

Then, we have,

_ 1 _ e—sa _ e—sb
Il)l_r)’fcllL{F(t)} =3 I]}l_r)lcllh(b —a) [—]

b—a
h—coo h—co
1 e~sa _ e—sb
L [T] pmh(—a)
h—oo
1
= ;se‘sa. 1 (using L'Hospital’s Rule)
= e~ 54,
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, e e
Then, ll_r:L L{F(t)} = - gl_l"ﬂa h(b - a}'[

h=4oo h=roo

1 =52 o=3h
=~ fim {e S| tim hb-2)
5 b=a b—a b=+a

h—+o0

1

=-s5.¢ "1 [Using L'Hospital's Rule]
5

= E—Sﬂ

svayan ()

Thank you.



