Transform Calculus and its Applications in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture — 08
Laplace Transform of some special Functions

Welcome again. In the last lecture, we have discussed the Laplace transform of a periodic

function.
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Example
Find the Laplace transformation of F(t) = |sin t|.

Solution:

F(t) = |sint| is a periodic function with period
7 defined by,

sin(t)

Fly=sint 0<t<w
Fit+7)=F(t)

Let us take the example where we need to find the Laplace transform of F(t) = |sint|.

We know that F(t) = |sint| is a periodic function with period 7, which is defined by
F(t) =sint, 0<t<m and F(t+m) = F(t).
And, on the right side of the slide, we can see the graph for this periodic function.

So, our aim is to find out L{| sint |}, where |sint | is a periodic function of period 7. So,

let us see the solution process for this.
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We can write Laplace transform of periodic function using the derived formula as:
1 T
L{|sint|} = —_f e Stsint dt
1—es™
0

Now, this integral can be evaluated easily using the formula [e® sinbx dx =

ax

221D2 [a sin bx — b cos bx]. Therefore,

1
L{|sin tl} = 1_—

e—ST[

Vi3
I where, I=f e Stsint dt.
0

And, we can evaluate this integral to obtain

e ST+ 1

] =———-.
1+ s2
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So, that Laplace transform of | sint | is given by

1 1457
1+s21—eST

L{|sint|} =
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Now, let us see another function, which we call Sine Integral function defined by

tsinx
Si(t) = | —dx.
0 X
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Sine Integral Function

And the graph of Sine Integral function is also given in the slide.

Now, we will try to solve this problem using various methods to show that one particular

problem can be solved using various techniques and we will get the same result.



First, using Integral Theorem, we will solve the problem.
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We know from the Laplace transform of integral,

L {ftF(x)dx} = @ , where, f(s) = L{F(t)}.

Therefore,

L{Si(O)} = L Uot Si:xdx} - %L {L?t}

. . int .
So, only thing we have to do is to evaluate the Laplace transform of % and this we can

write down using division theorem as,

usioy =1 [ e [ ugsing =

x2+1 s2+1

1
=< [tan~1 x]?

1 tan-1 ]
=—|=—tan"'s

sl2

1
=—tan"1—.

s s

So, this is the simplest solution using the integral theorem.
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Method 1 : Using integral theorem

We know that L{ f F(x}dx} = @
0

s

- Si()} = 2L{§%t}

=
== f, mdx (Using division theorem)

The next method is using Differential, Multiplication and Initial Value Theorem. In the

last lecture, we have discussed the Initial and Final Value Theorems.
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So, here let

F(t) = Si(t) = f t“%dx and f(s) = L{F(O)).

0



From here, clearly F(0) = 0.

Using the Leibniz integral rule, we can always say, F'(t) = % ( ) Ot Sl:x dx) = Sl: 3

= tF'(t) = sint.
So, once we are obtaining F(0) and F'(t), we can write down

L{tF'(t)} = L{sin t}

= s f5) - FO)) = (1)

s2+1
since L{F'(t)} = s f(s) — F(0) using Laplace Transform of derivative of a function

and L{tF'(t)} = — % [L{F'(t)}] using the property of multiplication by t.

Now integrating both sides of (1), we have,

sf(s) = —tan"ls + ¢, where,cis constant of integration.
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Now, we have to find out the value of c. Here comes the role of the Initial Value Theorem.

From the results of the Initial Value Theorem, we have,

Sli_)rg)sf(s) = {i_r}r(}F(t) =F(0)=0

= limsf(s) =0
S—00



1

>0=—tan "0+
i
=>0=—§+c
o
ﬁC—E

1

1 1
o f(s) = LEF(8)} = E(g —tan~ts) = —tan~l .

So, here actually we are using the concept of Initial Value Theorem to find out the value

of the arbitrary constant ¢ and we are getting the same result as earlier.
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Method 2 : Using Differential, multiplication and initial value theorem

Let, F(t) = Si(t) = f T L{F()} = f(s)
0 X

in t
2 F(0)=0and F'(t) = s'—':~ (Using Leibniz Integral Rule)

Leibniz Integral Rule

& T Fles et = Joge) et + F(x, Q)5 ~ F(x, L)
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" tF'(t) =sint
= L{tF'(t)} = L{sint}

= - %L{F'(t)} = 1—:-5-:- (Using Multiplication Theorem)

= %(;f(s) - F(©) =- 1:

d
= E(sf{s)) = HH-;s?

& (Using Differention Theorem)

= sf(s) = —tan~'s+ ¢ (integrating both sides)
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By Initial value theorem,
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Method 3 : Using infinite series

t sinx t X
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Now, the third is by using infinite series expansion. We know that sin x can be expressed

in terms of infinite series as:

x3 x> x7

sinx=x—§+§—ﬁ+--- 2)

Since our given function is %, so dividing (2) by x, we obtain

And, we can integrate it very easily within the limits O to ¢ to obtain:

ftsinxd . t3 N t> t7 N
—dax =t — — eos
0o X 3.3! 5.5 7.7!
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So, taking Laplace transform on both side, and using linearity property, we get

L Utﬂdx} = L{t} — LL{t:"} + LL{t5} — LL{t7} + -
o X

3.3! 5.5! 7.7!
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So, we can solve the same problem using various techniques.



The fourth method, which we will show is by using substitution.
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Method 4 : Using substitution

letx =tv

tsinx Lsin tv
e
Jo X 0 Vv

«if .[o' Si%dx} = f ‘[01 Si"%dv}

£3 qier #
= [ et [ 20 v |t (Using definid
0 40 v

Let us substitute x = tv in |, 0 % dx so that dx = tdv and the limits of integration will

be changed from [0, t] to [0,1]. Therefore,

tsinx Isintv
dx = dv
o X o V

Taking Laplace transform on both sides, we can write

tsinx Lsintv
L J dx¢ = Lj dv
o X o VU

oo 13 t
= j e—st < j SH; 1]dv) dt  (using definition)
0 0

We now change the order of integration to obtain

tsinx 100 .
L J—dx =f - f e Stsinvtdt | dv
o X 0o V\Jo

11
=f — L{sinvt}dv
oV

11
=f0 E(sz-llivz) dv
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V.

11 o0
= / —( [ e sinty dt) dv (By changing of order)
Jo 0

. [1 L{sin tv}dy
0

v

_jl dv
I

Therefore, the same problem can be solved in 4 different ways.



Now, let us consider another function, the Cosine Integral Function.
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Cosine Integral Function
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Cosine Integral Function Ci(t) is defined by, Ci(t) = | “*dx

The graphical representation can be viewed in the above slide. The function is defined by

“cosx
dx.

Ci(t) =]
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Let, F(t) = Ci{t) = [ = 2 eand L{F(0) = 1)

t
S F(t) = —% (Using Leibniz Integral Rule)




Now, the solution procedure for finding the Laplace transform remains similar. We assume

F(t) =Ci(t) = [T 2Edx and L{F(t)} = f(s). Clearly, using Leibniz rule of

t x

cost
¢ .

integration, we have F'(t) = —

= tF'(t) = —cost.

Now taking the Laplace transform on both sides and using the multiplication theorem and
Laplace transform of derivative (refer to the attached lecture slide for step by step details),

we can easily obtain the result as

sf(s) = %log(s2 +1) +ec. 3)
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. tF'(t) = —cost
= L{tF'(t)} = —L{cost}

d s
= - EL{F’(:)} e (Using Multiplication Thearem)

d s S
= ¥ (sf (s)-F ([l)) =R (Using Differentiation Theorem)

Now, we have to find out the value of the constant of integration c. For that we will use

the Final Value Theorem which states
limsf(s) = lim F(t).
s—0 t—>oo

Clearly, by the definition of F(t), tlim F(t) = 0 so that ling sf (s) also equals 0. Therefore,
—00 S—

(3) implies



so that sf(s) = %log(s2 + 1). Therefore,

1
f(s) = L{Ci(t)} = Elog(s2 +1).
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By Final value theorem,

o0
lim sf(s) = lim F(t) = f DX =0
s+ oo o X

L e=1

L f(s)= 21—slog{s2 +1)

Now, we come to the Exponential Integral Function whose graphical representation can

be viewed in the slide attached below:
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Exponential Integral Function
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Exponential Integral Function E(t) is defined by, E(t) = [ " dx

o0 a=X

Let, F(t) = E(t) = f £ and L{F(0)} = 1(5)

The Exponential Integral function is defined as



(Refer Slide Time: 25:34)

t
¥ (e - 5 9-1‘ A L{?'Wj:.'\%h)
.b

LY E:A7
) = — —
¥ =

We assume F(t) = E;(t) = [ :0 ex;x dx and L{F(t)} = f(s) so that using Leibniz integral

-t

rule, F'(t) = —eT.
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Let, F(t) = Ei(t) = ]ao ex:dx and
L{F(t)} = f(s)

=t

L) = -eT (Using Leibniz Integral Rule)

Now, we will follow the similar process as earlier. All the steps are clearly presented in

the attached slide. As we can see, we obtain the final result after integration as



sf(s) =log(s+1)+c 4)
where c is the constant of integration whose value we need to evaluate.
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| tF(t)=-e!
= L{tF'(t)} = -L{e™"}

= - %L{F'(t)} = —ﬁ (Using Multiplication Theorem)

— %(sf (s) - F(i})) = % (Using Differentiation Theorem)

— %(sf{s]) = 51_1

= sf(s) = log(s + 1) + ¢ (integrating both sides)

So, we use the Final Value theorem as earlier to evaluate c.
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By Final value theorem,
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The Final Value Theorem states

limsf(s) = lim F(¢).
s—0 t—oo



Clearly, by the definition of F(t), tlim F(t) = 0so that ling sf(s) also equals 0. Therefore,
—00 s>

(4) implies

so that sf(s) = log(s + 1). Therefore,

£(s) = LEE(©)) = ~log(s +1).

So, these are some special functions, whose Laplace transforms have been derived. In the
next lecture also, we will initially start with some more special functions, which are very
useful in various engineering problems, statistics and many more. So, we will try to
evaluate the Laplace transforms of those useful and frequently used functions in the next

lecture.



