Transform Calculus and its Applications in Differential Equations Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Lecture – 55 Properties of Mellin Transform

In the last lecture, we started the Mellin transform. We had seen the definition of Mellin Transform and how to find out the Mellin transform of a function and also some of its applications. We have solved some examples also.

(Refer Slide Time: 00:51)

In this particular lecture, what we are going to do is to study certain properties of Mellin transform. The first property is scaling property that is if $M[f(x)] = \overline{F}(s)$, then

$$
M[f(ax)] = a^{-s}\bar{F}(s), \qquad a > 0
$$

(Refer Slide Time: 01:33)

Ì

$$
M \underline{F} f(a*) = \int_{0}^{\infty} x^n \frac{1}{3} (a!) \, dx
$$
\n
$$
= \int_{0}^{\infty} \frac{a^{n-1}}{a^{n-1}} \frac{1}{3} (0) \frac{1}{6} \, du
$$
\n
$$
= \int_{0}^{\infty} \frac{a^{n-1}}{a^{n-1}} \frac{1}{3} (0) \frac{1}{6} \, du
$$
\n
$$
= \frac{1}{6} \int_{0}^{\infty} \frac{a^{n-1}}{3} \frac{1}{3} (0) \frac{1}{6} \, du
$$
\n
$$
= \frac{1}{6} \int_{0}^{\infty} \frac{1}{3} (0) \frac{1}{6} \, du
$$

To prove the above result, let us start with the definition of Mellin transform.

$$
M[f(ax)] = \int_0^\infty x^{s-1} f(ax) dx
$$

CONTRACTOR

If we put $ax = v$ on the RHS, we will obtain,

 $9.3.7.5$ \blacksquare

$$
M[f(ax)] = \int_0^\infty \left(\frac{v}{a}\right)^{s-1} f(v) \frac{dv}{a}
$$

$$
= a^{-s} \int_0^\infty v^{s-1} f(v) dv
$$

$$
= a^{-s} \overline{F}(s)
$$

This completes the proof.

(Refer Slide Time: 03:22)

(Refer Slide Time: 04:02)

The next property is the shifting property, that is,

$$
M[x^a f(x)] = \bar{F}(s+a)
$$

(Refer Slide Time: 04:27)

$$
M [x^{2} \n\{0\}] = \int_{0}^{\infty} x^{n-1} x^{n} \n\{0\} dx
$$
\n
$$
= \int_{0}^{\infty} x^{(n+0)-1} \n\{0\} dx
$$
\n
$$
= \int_{0}^{\infty} (x + \alpha)
$$

Let us see the proof of this. From definition, we have,

$$
M[x^a f(x)] = \int_0^\infty x^{s-1} x^a f(x) dx
$$

=
$$
\int_0^\infty x^{s+a-1} f(x) dx
$$

=
$$
\overline{F}(s+a)
$$

(Refer Slide Time: 06:11)

$$
M \left[\frac{1}{3} (3a)^{3} - \int_{0}^{\infty} 3^{n-1} (3a)^{3} 3^{n-1} (3a)^{n-1} (3a)^{n-
$$

 9999577

 $\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline & 100 & 100 & 100 \\ \hline \end{tabular}$

Next, we will show that,

$$
M[f(x^a)] = \frac{1}{a}\bar{F}\left(\frac{s}{a}\right)
$$

Using the definition, we get,

$$
M[f(x^a)] = \int_0^\infty x^{s-1} f(x^a) dx
$$

If we put $x^a = v$ on the RHS of the above equation, then it will reduce to,

$$
M[f(x^a)] = \int_0^\infty v^{\frac{s-1}{a}} f(v) \frac{1}{a} v^{\frac{1}{a}-1} dv
$$

$$
= \frac{1}{a} \int_0^\infty v^{\frac{s}{a}-1} f(v) dv
$$

$$
= \frac{1}{a} \overline{F} \left(\frac{s}{a} \right)
$$

This completes the proof.

(Refer Slide Time: 09:24)

$$
M\left[\frac{1}{2} \frac{1}{3} \left(\frac{1}{4}\right)\right] = \int_{0}^{2} \frac{1}{3} \left(\frac{1}{3}\right) \frac{1}{3} \frac{1}{3} \left(\frac{1}{3}\right) \frac{1}{3} \frac{1}{
$$

 $= 0.0151 \frac{100}{100000}$

◢

If
$$
M[f(x)] = \overline{F}(s)
$$
, let us find $M\left[\frac{1}{x}f\left(\frac{1}{x}\right)\right]$.

 9999577

Again from the definition of Mellin transform, we have,

$$
M\left[\frac{1}{x}f\left(\frac{1}{x}\right)\right] = \int_0^\infty x^{s-1} \frac{1}{x} f\left(\frac{1}{x}\right) dx
$$

Let us use the substitution $\frac{1}{x} = v$ on the RHS of the above equation. In this case $v \to 0$ as $x \to \infty$ and $v \to \infty$ as $x \to 0$. Therefore, the above equation reduces to,

$$
M\left[\frac{1}{x}f\left(\frac{1}{x}\right)\right] = \int_{\infty}^{0} v^{1-s}v f(v)\left(-\frac{dv}{v^2}\right)
$$

$$
= -\int_{\infty}^{0} v^{-s} f(v)dv
$$

Now changing the limits of the integration, we will get,

$$
M\left[\frac{1}{x}f\left(\frac{1}{x}\right)\right] = \int_0^\infty v^{(1-s)-1} f(v) dv = \overline{F}(1-s)
$$

(Refer Slide Time: 12:16)

Let us move to the next problem where we will show that,

$$
M[(\log x)f(x)] = \frac{d}{ds}(\bar{F}(s))
$$

where, $\bar{F}(s) = M[f(x)].$

From definition, we have,

$$
\bar{F}(s) = \int_0^\infty x^{s-1} f(x) dx
$$

Now differentiating both sides of the above equation w.r.t. s, we will get,

$$
\frac{d}{ds}\big(\bar{F}(s)\big) = \frac{d}{ds}\bigg(\int_0^\infty x^{s-1}f(x)dx\bigg)
$$

Since the integration is with respect to *s*, we can take $\frac{d}{ds}$ under integration sign i.e.,

$$
\frac{d}{ds}(\overline{F}(s)) = \int_0^\infty \frac{d}{ds} (x^{s-1}) f(x) dx
$$

$$
= \int_0^\infty x^{s-1} \log x f(x) dx
$$

$$
= M[(\log x) f(x)]
$$

(Refer Slide Time: 15:35)

The next property is the Mellin transform of derivatives.

$$
M[f'(x)] = -(s-1)\bar{F}(s-1)
$$

provided, $x^{s-1}f(x)$ vanishes as $x \to 0$ and $x \to \infty$.

(Refer Slide Time: 16:23)

From the definition, we can write,

$$
M[f'(x)] = \int_0^\infty x^{s-1} f'(x) dx
$$

Now, using integration by parts on the RHS of the above equation, we get,

$$
M[f'(x)] = [x^{s-1}f(x)]_0^{\infty} - (s-1) \int_0^{\infty} x^{s-2}f(x)dx
$$

Since, $x^{s-1}f(x)$ vanishes as $x \to 0$ and $x \to \infty$, so we will get from the above equation,

$$
M[f'(x)] = -(s-1)\int_0^{\infty} x^{(s-1)-1} f(x) dx
$$

= -(s-1) $\bar{F}(s-1)$

(Refer Slide Time: 19:14)

(Refer Slide Time: 19:37)

So, in the same way, we can find the Mellin transform of $f''(x)$ as,

$$
M[f''(x)] = (s-1)(s-2)\bar{F}(s-2)
$$

In general,

$$
M[f^{n}(x)] = (-1)^{n} \frac{\Gamma(s)}{\Gamma(s-n)} \overline{F}(s-n)
$$

provided, $x^{s-r-1}f^{r}(x) \to 0$ as $x \to 0$ and $x \to \infty$ for $r = 0,1,2,\dots, n-1$.

(Refer Slide Time: 21:46)

(Refer Slide Time: 22:24)

The next property is, if $M[f(x)] = \overline{F}(s)$, then $M[x f'(x)] = -s\overline{F}(s)$ provided $x^s f(x) \to 0$ as $x \to 0$ and $x \to \infty$.

(Refer Slide Time: 22:52)

Ì

M [13] (0)] =
$$
\int \pi^{2} \cdot 4 \cdot 4 \cdot 6 \cdot 6 = \int \pi^{3} \cdot 4 \cdot 6 \cdot 6 = \pi
$$

\n= $[4^{n} \pm 6 \cdot 3] = 6 \cdot 3 = 6 \cdot 6 = 6$
\n= $[\frac{60}{60}]} = 6$

From the definition, we can write,

$$
M[xf'(x)] = \int_0^\infty x^s f'(x) dx
$$

Using integration by parts, we will get,

$$
M[xf'(x)] = [xs f(x)]_0^{\infty} - s \int_0^{\infty} x^{s-1} f(x) dx
$$

Since $x^s f(x) \to 0$ as $x \to 0$ and $x \to \infty$, we will have,

$$
M[xf'(x)] = -s \int_0^\infty x^{s-1} f(x) dx = -s\overline{F}(s)
$$

Similarly, we can have,

$$
M[x^2 f''(x)] = (-1)^2 s(s+1)\bar{F}(s)
$$

In general,

$$
M[x^n f^{(n)}(x)] = (-1)^n \frac{\Gamma(s+n)}{\Gamma(s)} \overline{F}(s)
$$

(Refer Slide Time: 25:50)

Next one is, if $M[f(x)] = \overline{F}(s)$, then

 9 9 9 9 8 8 1 1

$$
M\left[\left(x\frac{d}{dx}\right)^2 f(x)\right] = M[x^2 f''(x) + xf'(x)] = (-1)^2 s^2 \overline{F}(s)
$$

(Refer Slide Time: 26:37)

$$
H\left[\left(1+\frac{1}{2}\right)^{2}+\left(1
$$

 $\theta \sim 0.5^{+0.01}_{-0.0000}$.

(Refer Slide Time: 27:25)

Ï

$$
M\left[\left(1+\frac{97}{9}\right)^{2}f(4)\right] = (-1)^{2}u^{3} \text{ (m)}
$$
\n
$$
= -u\left[\frac{1}{2}u^{2} + v(0+1)\right] = (u)
$$
\n
$$
= -u\left[\frac{1}{2}u^{2} + v(0+1)\right] = (u)
$$
\n
$$
= -u\left[\frac{1}{2}u^{2} + v(0+1)\right] = (u)
$$
\n
$$
= -u\left[\frac{1}{2}u^{2} + v(0+1)\right] = (u)
$$
\n
$$
= u\left[\frac{1}{2}u^{2} + v(0+1)\right] = (u)
$$

CONTRACTOR

Let us see the proof.

$$
M\left[\left(x\frac{d}{dx}\right)^2 f(x)\right] = M[x^2 f''(x) + xf'(x)]
$$

= M[x^2 f''(x)] + M[xf'(x)]

Again we know that,

$$
M[xf'(x)] = -s\bar{F}(s)
$$

$$
M[x^{2}f''(x)] = (-1)^{2}s(s+1)\bar{F}(s)
$$

Putting these values in the above equation, we get,

 $9.3.7.5$ \blacksquare

$$
M\left[\left(x\frac{d}{dx}\right)^2 f(x)\right] = (-1)^2 s(s+1)\overline{F}(s) - s\overline{F}(s)
$$

$$
= (s^2 + s - s)\overline{F}(s)
$$

$$
= (-1)^2 s^2 \overline{F}(s)
$$

In general, we can say that,

$$
M\left[\left(x\frac{d}{dx}\right)^n f(x)\right] = (-1)^n s^n \bar{F}(s)
$$

(Refer Slide Time: 29:16)

(Refer Slide Time: 29:39)

So, in the next lecture, we will see the Mellin transform of integration of a function and the convolution of the Mellin transform of two functions as well as some applications of Mellin transform. Thank you.