Transform Calculus and its Applications in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture —55
Properties of Mellin Transform

In the last lecture, we started the Mellin transform. We had seen the definition of Mellin
Transform and how to find out the Mellin transform of a function and also some of its

applications. We have solved some examples also.
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Basic Operational Properties

(i)  Scaling property:

If M[f(x)] =F(s), then
MIF(ax)] =a~*F(s), a>0

In this particular lecture, what we are going to do is to study certain properties of Mellin

transform. The first property is scaling property that is if M[f(x)] = F(s), then

M[f(ax)] = a=SF(s), a>0
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To prove the above result, let us start with the definition of Mellin transform.

MIf (ax)] = f xS (ax) dx

0

If we put ax = v on the RHS, we will obtain,

mir@al= [ (3)

0

=as fomvs‘lf(v)dv

s—1

d
f =

= a5F(s)

This completes the proof.
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Proof:

lf(ar)] = /0 " (ax) d

o=l dv
=/0 Ff(v) = [put ax = v]

=% f” v (v) dv
0
=a~*F(s)
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(ii)  Shifting property:

MIx*f(x)] = F(s +a)

(i) Mire) = SFC)
(i) M[%f(%)]:?(l—s)

() Mlogx()) = 5 Fs)

The next property is the shifting property, that is,

M[x%f(x)] = F(s + a)



(Refer Slide Time: 04:27)

J PP QU OO

o o .\
™M (_1 X U)}-. X'th o ) it
0

OC  (hee) -t
*

=\

NS Ak

” E(Mo.)

Let us see the proof of this. From definition, we have,

M[x%f (x)] =f x5 x4 f (x)dx

0
= Joox”a‘lf(x)dx
0
=F(s+a)
(Refer Slide Time: 06:11)
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Next, we will show that,

Qlr

_ /S
MIFG)] =—F (=)
Using the definition, we get,

MIf(x%)] = f X571 f (@) dx

0

If we put x® = v on the RHS of the above equation, then it will reduce to,

o)

s—1 1 1
va(v)E va ' dv

Mira) = |

0

1(%° s,
= Lva f(w)dv

P
1_
=2F(3)

This completes the proof.
(Refer Slide Time: 09:24)
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If MIf(x)] = F(s), letus find M |2 £ (3)]



Again from the definition of Mellin transform, we have,

)i

Let us use the substitution i = v on the RHS of the above equation. In this case v — 0 as

x - o and v — o as x — 0. Therefore, the above equation reduces to,

[ ()= [ vsere (-57)
= — fov‘s fw)dv

Now changing the limits of the integration, we will get,

M Ef (%)] = fooov(l‘s)‘l fw)dv=F1—s)

(Refer Slide Time: 12:16)
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Let us move to the next problem where we will show that,

M[(logx)f (x)] = —(F(s))

where, F(s) = M[f (x)].



From definition, we have,

(o)

F(s) =f xS (x)dx
0

Now differentiating both sides of the above equation w.r.t. s, we will get,

%(ﬁ(s)) =%(f0

Since the integration is with respect to s, we can take % under integration sign i.e.,

[o9)

xs‘lf(x)dx)

d , _ “d
SO =] L

= fooxs‘l logx f(x)dx
0
= M[(logx)f (x)]
(Refer Slide Time: 15:35)
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(vi)  Mellin transform of derivatives:

M[f'(x)] = = (s = 1)F(s = 1)

provided [x*~1f(x)] vanishes as x = 0 and x = 0o

The next property is the Mellin transform of derivatives.

M[f'(x)] = —(s — DF(s — 1)

provided, x$~1f(x) vanishes as x — 0 and x — .
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From the definition, we can write,
MiF ol = [ Xt
0
Now, using integration by parts on the RHS of the above equation, we get,
M[f'(O)] =[x f)IF — (s =D fo ooxs‘zf (x)dx
Since, x571f(x) vanishes as x - 0 and x — oo, so we will get from the above equation,

MIF ] = =G - 1) [ 2D
0

=—(s—1F(s—1)
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s

Proof:

MIF(x)] = /o " 1 (x) dx

_xs—l X el = $-2 X
_[ f )} . (s 1)./0 X2 (x) dx

=[x"1f(x)} i) / U (x)) de
J0

x=0

=—(s—1)F(s 1)
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So, in the same way, we can find the Mellin transform of ' (x) as,

MIf" ()] = (s = D(s = 2)F (s — 2)

In general,

I'(s)
I'(s—n)

provided, x57""1f"(x) > 0asx —» 0 and x » oo forr = 0,1,2,-,n — 1.

M[f" ()] = (D" F(s-mn)
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S M (X)) = (s = 1)(s — 2)F(s - 2)

r(s)
(s - n)

1
A=

In general, M[f("(x)] =(~ l)"

F(s—n)

M[f(x),s - n]

provided x*~""1f)(x) =0 as x 50 for r=0,1,2,..,n =1

(Refer Slide Time: 22:24)

(vii) If M[f(x)] = F(s), then M[xf'(x)] = —sF(s) provided
x*f(x) =0 as x =0 and x — o0

Solution:
Mxf'(x)] = /o " ¥oF(x) dx
=|x*f(x - (’ox"1 x) dx
_[ f )Lo sfo (x) d

= - sF(s)

M ()] =(=1)’s(s + 1)F(s)
l(s+n)=
r(s)

In general, M[x"F")(x)] =(~1)"————F(s)

The next property is, if M[f (x)] = F(s), then M[xf'(x)] = —sF(s) provided x5f(x) - 0

asx —» 0and x — oo.
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From the definition, we can write,
M) = [
0
Using integration by parts, we will get,
Mxf' ()] = [x*f(O)]g — s fo ooxs‘lf (x)dx

Since x°f(x) » 0as x —» 0 and x — oo, we will have,

o)

Mlxf'(x)] = —SJ x571f(x)dx = —sF(s)
0

Similarly, we can have,

MIx2f" (0] = (=D?s(s + DF(s)

In general,

M[x"f(")(x)] _ () I'(s+n) _
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(viii)  Mellin transform of differential operators:

It M[f(x)] =F(s), then,
M a zf =M[x%f" f!
(“a) (x)| =MICF"(x) 4 2" (x)

=(-1)*s%F(s)

Next one is, if M[f(x)] = F(s), then

d\* _
M [(x =) f(x)] = MES" () + (0] = (~D?°F (5)
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Let us see the proof.

d 2
| (x ) 760| =t + 2o
= M (O] + MIf' ()]

Again we know that,

Mxf'(x)] = —sF(s)
Mx*f"(x)] = (=1)%s(s + 1)F(s)
Putting these values in the above equation, we get,
d\’ _ _
M [(x a) f(x)l = (=1)%5(s + DF(s) — sF(s)

= (s2+s—5)F(s)
= (=1)%s*F(s)

In general, we can say that,

M l(x %)n f(x)l = (—1)"s"F(s)
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Proof:

2
(x%) f(x) =x%(xf'(x))
=x[xf"(x) + f'(x)]
=xf'(x) + x*f"(x)

LM [(x%)zf(x)] =M[x*F"(x) + xf'(x)]

=M[x*f"(x)) + Mxf'(x)]
== sF(s)+s(s + 1)F(s) by (vi)]
=(~1)F(s)

In general, M [(x%)nf(x)] = (~1)"s"F(s)

So, in the next lecture, we will see the Mellin transform of integration of a function and
the convolution of the Mellin transform of two functions as well as some applications of

Mellin transform. Thank you.



