Transform Calculus and Its Applications in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture — 05
Laplace Transform of Derivative and Integration of a Function — 11

In the earlier lecture, we have seen that, if we know the Laplace transform of a function,
then we have derived the formulas for evaluating the Laplace transform of its derivative

as well as integral.
Now, let us move on to the next theorem that is multiplication by powers of t.

(Refer Slide Time: 00:43)

Multiplication by powers of t
Theorem If L{F(t)} = f(s), then L{tF(t)} = —F'(s)

Proof: f(s) = L{F(t)} = ‘[m e F(t)dt

d G Bt
E!(s):;l‘ e SF(t)dt

= i)
= ‘[ a{e"'F(r}}tﬂ [Using differentiation under inte

A

If Laplace transform of F(t) is f(s), then Laplace transform of tF(t) equals [- f'(s)],
which means, if we know L{F(t)} = f(s), then

L{tF(©)} = =f"(s).

Let us see the proof.
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L{F(©)} = f(s) =J e SLF(t)dt

0

- ) -xe ew)*‘c" T—mye

By definition,

So, now we differentiate both sides with respect to s.
d d (©
_— = f'! = — _StF
= —f(s) = f'(s) = — fo e S'F(0)dt
Using differentiation under the sign of integration, we have,

0
F) = [ sntem R
0

= —J te SF(t)dt.
0
This can be re-written as
fi) == [ etereor
0

= —L{tF(t)} (by definition of Laplace Transform of tF(t))

Therefore, we obtain the desired result as



L{tF ()} = —f"(s).
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= I ) —te " F(t)dt

- I " et (e) e
= —L{tF(t)}
< L{tF(1)} = ~F(s)

Let us see the next theorem.
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Theorem i
If L{F(t)} = F(s), then L{t"F(t)} = (~1)"a;f(s), n=1,23..

Proof: Let us suppose that the theorem is true for m = r, so that

(=1)f"(s) = L{t'F(t)} = l:w e 't F(t)dt

&

If Laplace transform of F(t) equals f(s), then Laplace transform of t"F(t) is equal to

n
(—nn %f(s), where n can take values 1,2, 3,... and so on.

dn
~ L{t"F(t)} = (—D"Wf (s).



Let us see, how we can complete the proof.

(Refer Slide Time: 05:36)
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We are going to prove this with the help of mathematical induction. So, we assume that
the theorem is true for some positive integer n = r (say). We aim at showing that it is

trueforn=r+ 1.

Once we assume that the theorem is true for n = r, we can write

L to. 1)

Lit"F() } = (=1 Is

Now we evaluate L{t"*1F(t) }i.e.,, forn =7+ 1.

L{t"*1F(t) } = L{t.t"F(t)}

d
= L{t"F(t) } (using the result of the previous theorem)

d d _
—- e ere| g
r+1
= (D — ()

dST'+1



which shows that the theorem holds for n = r + 1. Therefore by the principle of
mathematical induction, we can say that the theorem is true for any positive

integer n.

d?’l
A L{t"F(t) } = (—D"Ff(s)-
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. [—l}'+1f'+1(5) e (_nr-!-ldr_ﬂf(s)
i dsr+!

= I " (et
=- Im —te S'tTF(t)dt

=
= | e {ttIF(t)}dt
= L{r1F(n)
S0, by Mathematical Induction, it is true for any positive integer n

Next, let us come to the division by t.

(Refer Slide Time: 11:09)

Division by t
Theorem If L{F(t)} = f(s), then L {-:—F(t)} = fm F(x)dx provided

lll_rpu {%F(t)} exists.




The theorem states that if Laplace transform of F(t) equals f(s), then Laplace transform

%F(t) is equal to [ f (x)dx provided lim {%F(t)} exists.
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We assume
1
G(t) = ? F(t)

= F(t) = tG(t).
Now we take Laplace transform on both sides.

= L{F(0)} = L{tG(D)}
d
=— gL{G (O}
Since, L{F (t)} = f(s), therefore we have,

d
> f(s) = = L{G(®)}

Integrating both sides within the limits [s, ), we have,

f FG) dx = —[LIGOY?



S f TF0 dx = = lim LG} + LG

Since, lim L{G(0)} = lim [* e~5¢G(¢) dt = 0, therefore,
S—00 S—00

foof(x) dx = —0+ L{G(t)}
= L{G(t)}
1

This completes the proof.
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Division by t

Theorem If L{F(t)} = f(s), then L {%F(t)} = fw F(x)dx provided
lll_rpu {%F(t)} exists.
Proof: Let G(t) = -:-F(r)
ie, F(t) =tG(t)
d
S L{F(D)} = L{tG(0)} = —EL{G{IE)}

af(d= --;;L{G(t)}

Al |
IRV
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I " Hla)a = -[L{a(:)}r

t=5

=~ lim L{G()} + L{G(1)}

= 0+ L{G(1)}

[ ‘Engn L{G(t)} = ‘hn; j’&” e~*G(t)dt = ‘}]

= L{%F(t)}

h
.l.fl

Now, let us solve certain examples on the properties and theorems that we have just

discussed.

The first one is to evaluate the Laplace transform of tcos at.
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Example
Find L{t cosat}
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Here, we have to find out Laplace transform of tcos at. So, clearly, we can use the

theorem for multiplication by powers of t. Then,
L{t t} = d L{ t}
cos aty = ds cosa
We know already the Laplace transform of cos at, so we get

d S
L{tcos at} = —g (sz-l-—az)

s2-q2

T (s2+a2)2’

s> 0.

So, we see the usefulness of the theorems and properties and how by their application,

we can obtain the desired results much easily.
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Example
Find L{t cosat}

Solution: L{cosat} = 2 i 2§ >0
" L{tcosat} = - d L{cosat}
" — ds
-5 (75)
T ds \s'+a?

B
—W|$>U

Next we come to the evaluation of L{t? sin at}.
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Example
Find L{t?sin at}

Solution:

L{sinat} = 52;%, s>0

. L{t*sinat} = (-1)} :%L{;in at}

O
d{ —2as }_23{3 - &)

= s To(s2a?)p ]

(Z+2)
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In this case also, we can obtain the result by the application of the theorem for

multiplication by powers of t. As we know already,

a

Lisinat} = ——
t } s2 + a?

dZ
~ L{t?sinat} = (—1)? s [L{sin at}]
_a? a
" ds? [52 + az]
We can easily differentiate the above twice w.r.t. s to obtain the following result:

2a(3s? — a?)

2 o3 —

L{t*sinat} = W, s> 0.

Again, we see that although the function is complicated, yet using the theorem, we can

evaluate the transforms without any difficulty.



The next example is a little complicated one as we can see. We need to evaluate
cosvt
L{ Vt }

(Refer Slide Time: 21:07)

Example

cos \/E}

Find L

Vi
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For this, we first assume
F(t) = sinVt

= F(0) = 0.



Clearly, if we differentiate F(t) w.r.t. t, then we obtain,

COS\/t

2Vt

F'(t) =

Now, we take Laplace Transform on both sides

L {cosx/t} )
2Vt )

Using Laplace transform of derivative of F(t), we have,

1 {cosx/t
=L

= > N7 } = sL{F(t)} — F(0)

=L {COS\/t} = 2sL{F(t)} -0
Vt

=L {Cojz/t} = 2sL{sinVt}

In lecture 3, we have already discussed the Laplace transform of sinvt. So we can

directly put the obtained value over here:

L {cosx/ t} Vo1

Vi )T B ®

T 1
= —e 4s

So, although the function was complicated, through proper assumption, we managed to

evaluate its Laplace transform with the help of certain properties and known results.
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Example
Find L e vt
Vit

Solution: Let F(t) = siny/t

= F'(:)=% ad F(0)=0

We know, L{F(t)} = SL{F(t)} - F(0)
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L{c;iﬁt } = sL{sin v/}

- sﬁe_#
25!




In the next example, we have to first prove L {Sl—?t} = tan‘li and using the result, we

sinat

need to evaluate L { } Finally, it is to be checked whether L {%at} exists or not.

(Refer Slide Time: 24:02)

Example
sint 1 sin at
Prove that L {IT} = tan~! = and hence find L{'T} Does the Laplace

cos at
Transform of = exist?

Solution: Let F(t) =sint

e 1w F(0)=0

=0t =0 t

and Lisint} = ;-r:_wi = f(s), (say)

F(X) = St F) =0

Lt Fkt) " \_'ﬁ Sun’e _
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So, to prove this one, again we are starting with assuming

F(t) =sint



so that F(0) = 0. Now, ltirr(}%t) = ltm&Sl—?t = 1. And we already know,

1
L{sint} = === f(s) (say).

Therefore, using the result of the theorem on division by t as discussed earlirer, we can

write,
L{Sl—nt} = Loof(x) dx

t
<1
= d
fsx2+1x

= [tan™1 x|

1 1

=tan “oco—tan " s

s
=——tan's
2

1
— tap—12=
= tan < (2)

So, this completes the first part of the given question. Next the Laplace transform of

sinat .
— is to be evaluated.
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As we have already discussed change of scale property, we can use it to solve the given

problem very easily. First we assume, L {L?t} = f(s) and from (2), we have,

sint 1
L {—} =tan~!—
t S
Therefore, by change of scale property, we have,
sin at 1 /s
L =—f(-
{ at } af (a)

1 (sinat
-1 -
a t

1
—tan
a

sinat _1a
L{ } =tan " —
t S
This completes the second part of the given question.

Next, we are going to check whether L { } exists or not.
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We know,

L{cosat} = _ = f(s) (say)



Then by the theorem on division by t, we can write,

L {cos at} _ wa(x) dx

t
= ——dx
s X2+ a?

= B log(x? + az)]s

1 1
= — lim log(x? + a?) — =log(s? + a?)
2 x—>co 2

cosat

Clearly, lim log(x? + a?) does not exist. Therefore L{ } also does not exist.
X—00

This completes the solution to the given problem.
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s
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Again since, L{cosat} = szi e f(s) (say)

cos at oy
"L{T}“f. Tret

1 o
= [5 log(x* + a’)}

= ; Jim_log(x” + %) - %lns(sz +)

which does not exist since lim _log(x? + a2) is infinite.
X=r00

cos at .
. L& —— ¢ does not exist.

In the next lecture, we will go through some more examples. Thank you.



