Transform Calculus and its Applications in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture - 04
Laplace Transform of Derivative and Integration of a Function - |

In the earlier lecture, we have studied certain properties of Laplace transform. In this
lecture, initially, we will go through some more examples, after which we will discuss

certain other important properties of Laplace Transform.
The first one is an application of the change of scale property.
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Example
Applying change of Scale Property, obtain the Laplace Transform of sinh 3t

Solution:

L{sinht} = ﬁ = f(s) (say).

.. Applying change of Scale Property,
L{sinh3t} = %f G)

11 ] 3
3] -0

1
s2-1

We need to find the Laplace transform of sinh 3t. So, as we know, L{sinht} =

(putting @ = 1 in the formula for L{sinh at}).

1

L{sinht} = = f(s) (say).

s2-1

Therefore, in order to obtain the Laplace Transform of sinh 3t, we can apply change of

scale property as

L{sinh at} = % 7(3).

a



Applying the change of scale property for a = 3, we have
. 1 /s
L{sinh 3t} = §f (§)

1 1

35
9

So, we can see the advantage of applying the change of scale property. Once we know

L{sinh t}, then we can simply evaluate L{sinh at} for any given value of a.

The next example is on the similar line. Find the Laplace transform of cos 5t.
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Example
Applying change of Scale Property, obtain the Laplace Transform of cos 5t

Solution:

L{cost} = ﬁ = 1(s) (s3y)-

.. Applying change of Scale Property,
L{cos5t} = ;f (i)

5

We know the Laplace transform of cost

s
s2+1

L{cost} = = f(s) (say).

Again applying the change of scale property, we can write down

L{cos 5t} = %f (%)



s
() +1

1 5s

552+ 25

1
= L{cos 5t} = 3

s
T 52425

Let us see the next example.
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Example

t—a
Find L{G(1)} where G(¢) = {; ' : z e
. a

Solution: Let L{F(t)}=f(s)
2. Then by Second Shifting Theorem, L{G(t)} = e=*f(s).

t—a
G(t) is a given function defined as G(t) = {e 0’ i Z Z and we need to find out its

Laplace transform. So, initially we assume that Laplace transform of F(t) is f(s).
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Here let F(t) = e,

S L{F()} = L{e'} = % = f(s) (say), s > 1

Fit-a)=e'"* , t>a
0 , t<a

qn={

L L{G()} = e ™ f(s) = s>1

s=1

Next we assume F(t) = et (say).

~ LFO} = L{et} = & =f(s), s>1

Then, et=® = F(t — a) and by the given definition of G (t), we have

_(F(t—a), t>a
G(t)_{ 0, t<a

Then, by second shifting property, Laplace transform of G (t) would be e £ (s).

= L{G[D)} = e f(s)

This gives us the desired result for L{G(t)} as eS_Tl



Let us now move to the next example.
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Example
Find L{F(t)} where
cos (t = Eﬂ) o b> -2-1:
F(t) = 3 i
0 = -3-

We are given a function F(t) as

21 2n
COS(t—?), t>—

F(t) =

whose Laplace transform we need to evaluate.
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FI_

Solution: Let ¢(t) = cost
2 2r
. F(t)= {¢(t 5“) ' t>;3;
0 , < ?.
We know, L{6(t)} = L{cos(t)} = 52—:_1 =f(s) (@) a0

S LF(D)} = e (s) [Using Second Shifting Theorem] 5




So, at first we assume ¢ (t) = cos t so that ¢ (t — 2?”) = cos (t — 2?”) Therefore, we have

S

L{¢(t)} = L{cost} = Zr1-/ (s) (say).

Then, F(t) becomes

F(t) =

so that we can apply the second shifting property to evaluate L{F (t)} as

LEF(D)} = e~ 35£(s)

2ns S

=e 3 ,
s2+1

So, whenever we are using this second shifting property, it becomes very easy for us to
find out the Laplace transform of some unknown functions knowing the Laplace transform

of certain known functions.
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Solution: Let &(t) = cost
eﬁ(t : ) t> v
_..,ﬂ 3 R
. F(t)= 3 23
T
0 , < —.

3

We know, L{6(t)} = L{cos(t)} = 52—:_1 = f(s) (say).

s HF()} = e‘giif(s] |Using Second Shifting Theorem)




We can use an alternative method as well to solve the previous problem.
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Alternative Method
Solution:

LF()} = [ " e (1),

oo
—[ '“Udt+[ e cos(!—-—rr)r

I
00 2
=/2_,r e cos(t—an')dt

v

g . : 2
= / e~ (%) cos xdx [Putt - 3T= x|
J0

Using the definition of Laplace transform, we can directly write it as

o)

L{F(t)} = f e StF(t)dt.

0

We can now break this integral into two parts according to the definition of F(t) as

follows:

21

3 *© 21
L{F(t)} = f e st.0dt + f e St cos (t - —) dt
0 27 3

3

*® 2T
= J e St cos (t — —) dt.
2 3

3

In order to evaluate the integral, we put t — 2?” = x S0 that dt = dx and the limits of the

integration are changed from [2?” oo) to [0, ).

[ee)

2T
e~ s(r+ 5 )cosxdx

UF@) = |

0



27Ss

= L{F(t)} = e_Tf e ¥ cosx dx
0

[ee)

_2ms

=e 3 e Stcostdt
0

_2ms
=e 3 L{cost}

_2ms S
=e 3 , s>0

s2+1
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= e"(T)fn e~ cosx dx

- -]
=e-"l9[ e~ cos tdt
Jo

= e""?l"L{cus t}
5

i ,5>0

si+1

So, from both the methods, we observe that if we know the second shifting property, we
can directly evaluate the Laplace transform of given F(t) and we do not need to evaluate

the integral.

Next example is of the similar type as the previous one.
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Example
Find L{F(t)} where

A function is given as

sin(t—g), t>g

F(t) = 3
0, t < 3

We need to evaluate L{F (t)}.
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Solution: Let o(t) = sint

We know, L{¢(t)} = L{sin(t)} = ;'EIT]: = f(s) (say).

~ L{F(t)} = e~ T F(s) [Using Second Shifting Theorem]

1
o _?—
e s=+1”>°

Here, we assume ¢ (t) = sint so that ¢ (t — g) = sin (t - g) Therefore, we have



=f(s) (say).

L0} = Lsint) = — =

Then, F(t) becomes

F(t) =

so that we can apply the second shifting property to evaluate L{F (t)} as

LEF(D)} = e 3°F(s)

Now, we come to another important property that is Laplace transform of derivatives of

F(¢).
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Laplace Transform of Derivatives of F(t)

Theorem
Let F(t) be continuous for all t > 0 and be of exponential order a as t — oo and if
F'(t) is of class A, then Laplace Transform of the derivative F'(t) exists when s > a

and

L{F'(t)} = sL{F(t)} - F(0)

Let F(t) be a continuous function for all t > 0 and be of exponential order a as t — oo.

And if F'(t) isof class 4, i.e., F'(t) is piecewise continuous and is of exponential order as

t — oo, then Laplace transform of F'(t)exists, when s > a.

And we can say that L{F'(t)} equals sL{F(t)} — F(0). Let us see the proof of this

property.
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Since F'(t) is of class A, so we know that F'(t) is a piecewise continuous function.

However, F'(t) may be continuous vVt > 0 as well. Thus, two cases may arise as follows:
Case 1: F'(t) is continuous Vt > 0

Case 2: F'(t) is piecewise continuous

We start with Case 1.

In this case, we are assuming that F'(t) is continuous vVt > 0. We can write down from
the definition of Laplace transform,

L{F’(t)}:f e StF'(t)dt.

0

We will use integration by parts to evaluate this.

[oe]

“L{F' ()} = [e StF ()] 2, + sf e SLF(t)dt
0

= lim[e~F(8)] — F(0) + sLIF()} M



We know the F(0) has a finite value and f0°° e StF(t)dt = L{F(t)}. So, we only have to

check whether tlim [eStF ()] is finite or not. If this limiting value exists, then we can say

that Laplace transform of F'(t) exists, and it will have some finite value.

(Refer Slide Time: 12:41)
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Since F(t) is of exponential order a as t — oo, S0 there exists a positive real number M

and a number a > 0 and a finite number t, such that
[F(t)]| < Me® Vit=>t,
~ e SF ()] < e SHF ()]

< e—StMeat

— Me-(s-a)t

—-0ast—-ooif s>a.

tlLrglo[e‘StF(t)] =0, s>a

Therefore, L{F'(t)} exists.

From (1), L{F' ()} = lim[e™*F(6)] = F(0) + SL{F(£)}

= sL{F(t)} — F(0).



This completes the proof for Case 1.
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Now, we come to the second case. In case 2, we assume that F'(t) is piecewise continuous,
which means, in each particular sub-domain of [0, ), the function F'(t) will be

continuous. We can write from the definition of Laplace transform,

[ee)

L{F'(t)} = f e StF'(t)dt.
0

This integral can be broken down into n number of finite sub-intervals, say [0, a],

[ai,a;], [as, as] ... [a,, ) such that in each of them, the function F’(t) is continuous.

Therefore, similar to Case 1, we can prove that for each of these sub-intervals, the integral

exists and it has a finite value and if we calculate it, we will get the same result as in Case

lie.,

L{F'(t)} = sL{F (t)} = F (0).

So, once we know the Laplace transform of F(t), then using this theorem, we can easily

evaluate the Laplace transform of its derivative also.
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Proof: CASE |

In case F'(t) is continuous for all t > 0, then
LF()} = / " et ()t )
0

= "'F(:)] + E “HF(t)de

= lim e "F(t) - F(0) + sL{F(t)}
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Now, [F(t)] < Me® for all ¢ > 0 and for some constants a and M.

We have , [e™*F(t)] = e~*|F(t)|
< et Met
= Me~ (=3
—0ast—oifs>a

o lim e F(t)=0fors > a
t—oo

From (2), we conclude L{F'(t)} exists and L{F'(t)} = sL{F(t)} — F(0)
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CASEll

In case F'(t) is piece-wise continuous, the integral (1) may be broken as the sum of
integrals in different ranges from 0 to oo such that F(t) is continuous in each of such
parts.

Then proceeding as in Case |, we shall have

L{F'(t)} = sL{F(t)} - F(0)

Next, let us consider the Laplace transform of nt" derivative of F(t).
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Laplace Transform of the n" Derivative of F(t)

Theorem

Let F(t) and its derivatives F'(t), F"(t), ..., F"~%(t) be continuous functions for all
t > 0 and be of exponential orders as t — oo and if F™(t) is of class A, then
Laplace Transform of F"(t) exists when s > a and is given by

L{F"(t)) = S"L{F(6)} = " F(0) = " 2F'(0) = . - F}(0)

As the result shows,

L{F*(t)} = s"L{F(t)} — s" 1F(0) — s"2F'(0) — --- — F""1(0).
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So, let us see how we can prove this theorem.
We have already proved
L{F' ()} = sL{F ()} = F (0). (2)
Using (2), we try to evaluate L{F"'(t)}. So we obtain
L{F" ()} = sL{F'(t)} — F'(0).
Here, again we substitute L{F'(t)} = sL{F (t)} — F(0) from (2) to get
L{F"(©)} = sL{F'(D)} — F'(0)

= s[sL{F(©)} = F(0)] — F'(0)

= s2L{F(t)} — sF(0) — F'(0). (3)
So, now we know the Laplace transform of F''(t).

Now, when we try to find out Laplace transform of F'"'(t) that is third derivative of the

function F(t), we can similarly write
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LAF ®)= n{L {?“u)g -7
=M \ h’”u\v—@)) ~-pE ()~ F‘(M_'l- F"Ui)

L WL R N EO) AL ~F(0)

vl n-k
~ A - )
L\ Feob=n \_\f“‘”:;_r: FO)=N F(0)--

< F (D)

L{F" ()} = sL{F"(£)} — F"(0).
We replace L{F"'(t)} from (3), so we have
L{F" ()} = s[s*L{F ()} — sF(0) — F'(0)] — F"(0)
= S3L{F(t)} — s2F(0) — sF'(0) — F"'(0).
If we proceed similarly, we can conclude that
L{F™(6)} = s"LEF (D)} — s"1F(0) — s™2F'(0) — - — F*~1(0).

So, when the Laplace transform of a function is known to us, we can easily evaluate the

Laplace transform of nt" derivative of the function as well.
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Proof; L{F'(t)} = sL{F(t)} - F(0) (1)
L{6"(1)} = sL{G(1)} - G(0)
If G(t) = F'(t),
Applying the result (1) to the second order derivative F”(t), we have,
L{F"(t)} = sL{F'(t)} - F'(0)
= s[sL{F(t)} - F(0)] - F'(0)
= s'L{F(t)} - sF(0) - F'(0) 2)
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Again applying (2) to the third order derivative F”'(t), we have,
L{Fm(t)} — SL{F”(:‘)} =, me)
= s[s2L{F(t)} — sF(0) - F/(0)] - F"(0)
= s’L{F(t)} - s’F(0) - sF'(0) — F"(0)

Proceeding similarly,
L{F™(t)} = s"L{F(t)} - s"'F(0) - s"?F'(0) - ... — F*~(0)
= L{F(1)} - S "1 F(0)

r=0




Next we come to Laplace transform of integrals of a function.
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Laplace Transform of Integrals

Theorem
If F(t) s piece-wise continuous and satisfies |F(t)| < Me® for all t > 0 for some
constants a and M, then

[ s -
L | Fx)dxh = “L{F(t)}

or, if L{F(t)} = f(s),
L{ tF(x)dx} = ;f(s)

H

Let F(t) be a piece-wise continuous function which satisfies
[F(t)| < Me*™ Vvt=0

for some constants a and M i.e., in other sense, we can say that F(t) is of exponential

order a as t — oo. Then

t 1
L {fo F(x)dx} = EL{F(t)}

1
= ~f(s)

where L{F(t)} = f(s).
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Let us see the proof. First of all, let us assume
t
G(t) =J F(x)dx.
0
So that clearly, G(0) = 0. Again,

d d ([t
¢'©) == 6®) = E{fo F(x)dx} = F(t).

Now, from the Laplace transform of derivatives of a function, we know,

L{G"(®)} = sL{G(£)} — G(0)

t
= L{F(t)} = sL {f F(x)dx} -0
0
t
= f(s) =sL {f F(x)dx}
0

51 {ftF(x)dx} - %f(s).

This completes the proof. Thank you.



