Transform Calculus and its Application in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture — 35
Fourier Transform of Convolution of two functions

In this lecture, let us start with the Convolution of Fourier transform. We had defined the
convolution in case of Laplace transform also and using the convolution properties, we
were able to find out the Laplace transform of various functions. First, we will define here,
what the convolution of two functions is and then we will see some properties of

convolution of Fourier transform.
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If two functions f(x) and g(x) are given to us, then the convolution is defined as,

1 [oe]
(f + )00 = 7= j (g - oyt
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Convolution

Definition
The convolution of two functions f(x) and g(x) is defined as

(&) = = [ Flo - )t

Theorem
The Fourier Transform of the convolution of £(x) and g(x) is the product of their
Fourier Transforms i.e.,

FF(x) xg(x)] = F(a).G(a) = F[f(x)]. 7{g(x)] @

SN

Now, let us come to a theorem which states that the Fourier transform of convolution of

two functions is the product of Fourier transform of those two functions i.e.,
Flf(x) xgx)] =F[f)]-Flgx)] =F(a)-G(a) So, this is similar to the
convolution theorem in case of Laplace transform. In Laplace transform also, same thing
happened that Laplace transform of convolution of two functions f(x) and g(x) is equal

to the product of Laplace transform of f(x) and Laplace transform of g(x).
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Proof:

Pl vg]= \/Lz_” /_ :(r ¥ g)(x)e™* dx

- _\/127 /_ Z (\/Lz?/_ Z F(t)glx - ) dt) e d
= \/Lz?/i f(t) (%z_ﬂ/_:g(x ~ t)eior dx) d

= "1¢2=,, / Z (1) 7 g(x - 1)) dt Q

So, we will go through the proof of this one now.
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From the definition of Fourier transform, we have,
P egl= [ (+9)00) eiax
V2T J_o

1 /(1 (® .
= Ef_ (Ef_ f(t)g(x - t)dt) e“"xdx

In this double integration, f is a function of t only, but g is a function of x and t. So, if

we change the order of integration, we get,

FliFegl=— [ fo(—= [ g = Deiwrax ) ar
NI DRAAW - I

Now, the integration \/%_nffzog(x — t)e!®dx is nothing but the Fourier transform of

g(x —t). Therefore, from the above equation, we get,

1 (o]
FIf v gl == j () Flg(x — O)]dt
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From the shifting theorem for Fourier transform, we have F[g(x — t)] = e'**F[g(x)].

So, using this we get,

FIf « g] = \/%_n [ @ e=rigeaa

Now, F[g(x)] = G(a) is independent of variable t. So, we can take F[g(x)] outside the

integration and rewrite the above equation as,
Flf 9] = G(a) 'Lfmf(t) et dt
V2 ) o
= G(a) - F(a)
This completes the proof.

From here, we can draw one corollary, that is

FHUF(@) - G(@)] = (f xg)(x) = FHF ()] » FHG(a)]
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18 hee ;
= Flf+g]= i / f(t)e'™ G(a) dt [ by Shifting Theorem |
-0

1 = iat
= 6lo) = / r(0e™ a
= F(a).G(a)

Corollary

FYF(a).G(a)] = (f * g)(x) = 7 Y[F(a)] * 7 ~'[G(a))] @
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Example
If f(x)=e"*, a>0, then find F;[e~] and hence evaluate

 qvsin ax
— a
a+a?

Solution:

2
.mrﬂﬂ@
2

o0
/ e ™ sinax dx
0
«

—\/;a2+a2 @

Now in the next example, we want to find the Fourier sine transform of e=**, where a >

0. Using the result, we will try to find out the value of the integral

j°° asinaxd
——da
o a’+a?

which is very difficult to solve directly.
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We have already obtained the Fourier sine transform of e ~** in previous lectures. So here

we are writing the result directly as,

—ax 2 a
Ble®l= T era

If we take the inverse Fourier sine transform, then, we have,

f(x)

2 [ee]
\ﬁf F,le *]sinax da
TJo

2 (® (2 a
S e M = —f —ﬁsinaxda
mT)y T a“+a

2f°° a sin ax
o a’+a?

S e M =— da

T

(Refer Slide Time: 16:25)

FEERNe Lg a. VB

Therefore, using inverse Fourier sine transform, we obtained the value of the integral as,

j‘masinax T
o a*+a? 2
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By inversion formula,

2 =22 o .
f(x)=\/;/0 \/;az—-l_azsmaxda

2/°°asinax
0

ie, e ¥ =—
T

e
; /‘ asmaxd -Ee'"
0

X
az+az

P 0-2

Now, let us see the next problem.
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L s enste N
Example
If f(x)=e"*, a>0, thenfind Fc[e=*] and hence evaluate
 cos ax
Solution:

o0
Fele™™] = / e~ ™cosax dx
0

a

Il
ﬁlﬂln

a? +a

R

The function is same, but here we want to find out the Fourier cosine transform of e =¥

cos ax

and from there we want to find the value of fooo da. So, obviously, now we have

a?+a?
understood that the technique will be similar as we have done it in the case of the earlier

problem, that is first we will find out the Fourier cosine transform.



Again, we have already done what is the Fourier cosine transform of e ~%*. So, we will

use that particular value whatever we have done earlier and using that one, we will try to
evaluate the value of the given integral.
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We obtained Fourier cosine transform of e ~%* as,

F [e-9] 2 a

e = |- ———

¢ T a?+ a?

So, following the same procedure, if we take the inverse Fourier cosine transform, then,
we have,

2 (o]
f(x) =\gjo F.le *] cosaxda

2 (® |2 a
> e ™ = —f —ﬁcosaxda
)y T a“+a
2a

ax “ cosax
>e ¥ =— ———da
mJ)y, a-+a

® cos ax T
d —_ —ax
0

a =
a? + a? 2a
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By inversion formula,

2 (® /2 a
f'(x)=\/;/0 \/;mcosaxda

. 2 [ acosax
18, @ = ﬁ o
Tl a+a

o0
/ €OS (X Ty
0

—da=—e
a’ +a? 2a
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Parseval's identity

Theorem
Let F(a) be the Fourier Transform of f(x) where f(x) is a complex function.

/_ : IF(x) dx = / Z IF(a)? da

Then

Now, let us discuss the Parseval’s identity or Parseval’s theorem. We did the same for the

Laplace transform also. So, Parseval’s identity states that,
| e = | F@Pda

Let us see the proof of this theorem.



(Refer Slide Time: 23:11)

o~ ot s

& \F(.J.)\"&o(’. S?(‘) ) a ok

ok - o ¢c.
mb_ yoe Farla

IR

X)‘(»L-—— X ) € &‘]At
ol

ol e

\ ¥ ‘_J\fv ‘Tewe 'mmtlo\t
2 ol

—

L%

I !

ol
)
ol

ok

— e ol Y
Ve Awar = | Voo

ol il

So, we are starting from the right hand side,

foo |F()|?da = fooF(a) F(a)da

— 00

If we replace F () by the definition of Fourier transform then, we get,

]_O:O|F(a)|2da = J:om[\/%_ﬂj_if(x)emxdx da

If we change the order of integration on the right side, we get,

| Z|F<a)|2da - O:of(x)

1 ®____
— F(a)e'*™da|dx
VZT[J_OO ( ) l

Oy

So, from the definition of inverse Fourier transform, we get,

f |F(@)[2da = f F() FQ) dx
- f IF GO l2dx

This completes the proof.
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Thank you.

Proof:

/_ : IF(a)? da = /_ : F(a)F(a) da

=[:ﬂa—) \/Lz_”[:f(x)e""" dx| da
= /_:f(x) [‘/%/_:me‘“ da| dx
:/;:f(x) [\/Lz_"l/_:mda dx

= /_ : F(X)F(R) dx = /_ o::|f(x)|2 dx




