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Lecture – 35 

Fourier Transform of Convolution of two functions 

 

In this lecture, let us start with the Convolution of Fourier transform. We had defined the 

convolution in case of Laplace transform also and using the convolution properties, we 

were able to find out the Laplace transform of various functions. First, we will define here, 

what the convolution of two functions is and then we will see some properties of 

convolution of Fourier transform. 

(Refer Slide Time: 00:56) 

 

If two functions 𝑓(𝑥) and 𝑔(𝑥) are given to us, then the convolution is defined as, 

(𝑓 ∗ 𝑔)(𝑥) =
1

√2𝜋
∫ 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡

∞

−∞
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Now, let us come to a theorem which states that the Fourier transform of convolution of 

two functions is the product of Fourier transform of those two functions i.e., 

ℱ[𝑓(𝑥) ∗ 𝑔(𝑥)] = ℱ[𝑓(𝑥)] ⋅ ℱ[𝑔(𝑥)] = 𝐹(𝛼) ⋅ 𝐺(𝛼) So, this is similar to the 

convolution theorem in case of Laplace transform. In Laplace transform also, same thing 

happened that Laplace transform of convolution of two functions 𝑓(𝑥) and 𝑔(𝑥) is equal 

to the product of Laplace transform of 𝑓(𝑥) and Laplace transform of 𝑔(𝑥).  
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So, we will go through the proof of this one now. 
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From the definition of Fourier transform, we have, 

ℱ[𝑓 ∗ 𝑔] =
1

√2𝜋
∫ (𝑓 ∗ 𝑔)(𝑥) 𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

=
1

√2𝜋
∫ (

1

√2𝜋
∫ 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡

∞

−∞

) 𝑒𝑖𝛼𝑥𝑑𝑥
∞

−∞

 

In this double integration, 𝑓 is a function of 𝑡 only, but 𝑔 is a function of 𝑥 and 𝑡. So, if 

we change the order of integration, we get, 

ℱ[𝑓 ∗ 𝑔] =
1

√2𝜋
∫ 𝑓(𝑡) (

1

√2𝜋
∫ 𝑔(𝑥 − 𝑡)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

) 𝑑𝑡
∞

−∞

 

Now, the integration 
1

√2𝜋
∫ 𝑔(𝑥 − 𝑡)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞
 is nothing but the Fourier transform of 

𝑔(𝑥 − 𝑡). Therefore, from the above equation, we get, 

ℱ[𝑓 ∗ 𝑔] =
1

√2𝜋
∫ 𝑓(𝑡) ℱ[𝑔(𝑥 − 𝑡)]𝑑𝑡

∞

−∞
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From the shifting theorem for Fourier transform, we have ℱ[𝑔(𝑥 − 𝑡)] = 𝑒𝑖𝛼𝑡ℱ[𝑔(𝑥)]. 

So, using this we get, 

ℱ[𝑓 ∗ 𝑔] =
1

√2𝜋
∫ 𝑓(𝑡) 𝑒𝑖𝛼𝑡ℱ[𝑔(𝑥)]𝑑𝑡

∞

−∞

 

Now, ℱ[𝑔(𝑥)] = 𝐺(𝛼) is independent of variable  𝑡. So, we can take ℱ[𝑔(𝑥)] outside the 

integration and rewrite the above equation as, 

 ℱ[𝑓 ∗ 𝑔] = 𝐺(𝛼) ⋅
1

√2𝜋
∫ 𝑓(𝑡) 𝑒𝑖𝛼𝑡𝑑𝑡

∞

−∞

 

= 𝐺(𝛼) ⋅ 𝐹(𝛼) 

This completes the proof. 

From here, we can draw one corollary, that is  

ℱ−1[𝐹(𝛼) ⋅ 𝐺(𝛼)] = (𝑓 ∗ 𝑔)(𝑥) = ℱ−1[𝐹(𝛼)] ∗ ℱ−1[𝐺(𝛼)] 
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Now in the next example, we want to find the Fourier sine transform of 𝑒−𝑎𝑥, where 𝑎 >

0. Using the result, we will try to find out the value of the integral 

∫  
𝛼 sin 𝛼𝑥

𝛼2 + 𝑎2
𝑑𝛼

∞

0

 

which is very difficult to solve directly. 
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We have already obtained the Fourier sine transform of 𝑒−𝑎𝑥 in previous lectures. So here 

we are writing the result directly as, 

ℱ𝑠[𝑒−𝑎𝑥] = √
2

𝜋
 

𝛼

𝛼2 + 𝑎2
 

If we take the inverse Fourier sine transform, then, we have, 

𝑓(𝑥) = √
2

𝜋
∫ ℱ𝑠[𝑒−𝑎𝑥] sin 𝛼𝑥 𝑑𝛼

∞

0

 

⇒ 𝑒−𝑎𝑥 = √
2

𝜋
∫ √

2

𝜋
 

𝛼

𝛼2 + 𝑎2
sin 𝛼𝑥 𝑑𝛼

∞

0

 

⇒ 𝑒−𝑎𝑥 =
2

𝜋
∫  

𝛼 sin 𝛼𝑥

𝛼2 + 𝑎2
𝑑𝛼

∞

0
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Therefore, using inverse Fourier sine transform, we obtained the value of the integral as, 

∫  
𝛼 sin 𝛼𝑥

𝛼2 + 𝑎2
𝑑𝛼 =

𝜋

2
𝑒−𝑎𝑥

∞

0
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Now, let us see the next problem. 
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The function is same, but here we want to find out the Fourier cosine transform of 𝑒−𝑎𝑥 

and from there we want to find the value of  ∫  
cos 𝛼𝑥

𝛼2+𝑎2
𝑑𝛼

∞

0
. So, obviously, now we have 

understood that the technique will be similar as we have done it in the case of the earlier 

problem, that is first we will find out the Fourier cosine transform. 



Again, we have already done what is the Fourier cosine transform of 𝑒−𝑎𝑥. So, we will 

use that particular value whatever we have done earlier and using that one, we will try to 

evaluate the value of the given integral. 
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We obtained Fourier cosine transform of 𝑒−𝑎𝑥 as, 

ℱ𝑐[𝑒−𝑎𝑥] = √
2

𝜋
 

𝑎

𝛼2 + 𝑎2
 

So, following the same procedure, if we take the inverse Fourier cosine transform, then, 

we have, 

  𝑓(𝑥) = √
2

𝜋
∫ ℱ𝑐[𝑒−𝑎𝑥] cos 𝛼𝑥 𝑑𝛼

∞

0

 

⇒ 𝑒−𝑎𝑥 = √
2

𝜋
∫ √

2

𝜋
 

𝑎

𝛼2 + 𝑎2
cos 𝛼𝑥 𝑑𝛼

∞

0

 

⇒ 𝑒−𝑎𝑥 =
2𝑎

𝜋
∫  

cos 𝛼𝑥

𝛼2 + 𝑎2
𝑑𝛼

∞

0

 

⇒ ∫  
cos 𝛼𝑥

𝛼2 + 𝑎2
𝑑𝛼

∞

0

 =
𝜋

2𝑎
𝑒−𝑎𝑥  
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Now, let us discuss the Parseval’s identity or Parseval’s theorem. We did the same for the 

Laplace transform also. So, Parseval’s identity states that, 

∫ |𝑓(𝑥)|2𝑑𝑥
∞

−∞

= ∫ |𝐹(𝛼)|2𝑑𝛼
∞

−∞

 

Let us see the proof of this theorem. 
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So, we are starting from the right hand side,  

∫ |𝐹(𝛼)|2𝑑𝛼
∞

−∞

= ∫ 𝐹(𝛼) 𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅𝑑𝛼
∞

−∞

 

If we replace 𝐹(𝛼) by the definition of Fourier transform then, we get, 

∫ |𝐹(𝛼)|2𝑑𝛼
∞

−∞

= ∫ 𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅ [
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

] 𝑑𝛼
∞

−∞

 

If we change the order of integration on the right side, we get, 

∫ |𝐹(𝛼)|2𝑑𝛼
∞

−∞

= ∫ 𝑓(𝑥) [
1

√2𝜋
∫ 𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅𝑒𝑖𝛼𝑥𝑑𝛼

∞

−∞

] 𝑑𝑥
∞

−∞

 

= ∫ 𝑓(𝑥) [
1

√2𝜋
∫ 𝐹(𝛼)𝑒−𝑖𝛼𝑥𝑑𝛼

∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 ] 𝑑𝑥

∞

−∞

 

So, from the definition of inverse Fourier transform, we get, 

∫ |𝐹(𝛼)|2𝑑𝛼
∞

−∞

= ∫ 𝑓(𝑥) 𝑓(𝑥)̅̅ ̅̅ ̅̅   𝑑𝑥
∞

−∞

 

= ∫ |𝑓(𝑥)|2𝑑𝑥
∞

−∞

 

This completes the proof. 
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Thank you. 


