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Lecture - 33 

Applications of Properties of Fourier Transform – 1 

 

In the last lectures, we have been going through the properties of Fourier transform and 

their applications. So, let us go through some more properties. 
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The next one is Fourier transform of 𝑓(−𝑥) equals 𝐹(−𝛼) and Fourier transform of  

𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅  is equal to  𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅. 
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Let us see the proof of the first one first, then we will go to the second one. From definition 

we have,  

ℱ[𝑓(−𝑥)] =
1

√2𝜋
∫ 𝑓(−𝑥)𝑒𝑖𝛼𝑥 𝑑𝑥

∞

−∞

 

Now, we cannot keep 𝑓(−𝑥). So, we are assuming, say 𝑦 = −𝑥 in the above equation so 

that 𝑑𝑥 = −𝑑𝑦. Therefore as 𝑥 approaches ∞, then 𝑦 will approach to −∞ and as 𝑥 

approaches −∞, then 𝑦 will approach to ∞.  So, the limit will be from ∞ to −∞  

∴ ℱ[𝑓(−𝑥)] =
1

√2𝜋
∫ 𝑓(𝑦)𝑒−𝑖𝛼𝑦 (−𝑑𝑦)

−∞

∞

 

Now if we make the limit from −∞ to ∞, then we can write down as 

∴ ℱ[𝑓(−𝑥)] =
1

√2𝜋
∫ 𝑓(𝑦)𝑒𝑖(−𝛼)𝑦 𝑑𝑦

∞

−∞

 

= 𝐹(−𝛼) 

This completes the proof. 
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Similarly, for the second one,  

∴ ℱ[𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ] =
1

√2𝜋
∫ 𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝛼𝑥 𝑑𝑥

∞

−∞

 

Now if we follow the same steps to get 𝑓(𝑦) from 𝑓(−𝑥), we will obtain, 

∴ ℱ[𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ] =
1

√2𝜋
∫ 𝑓(𝑦)̅̅ ̅̅ ̅̅ 𝑒−𝑖𝛼𝑦 𝑑𝑦

∞

−∞

 

= [
1

√2𝜋
∫ 𝑓(𝑦)𝑒𝑖𝛼𝑦 𝑑𝑦

∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
] 

= 𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅ 

So, this completes the proof of the theorem. 
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Now, the next theorem is Fourier transform of  𝑓(𝑥)̅̅ ̅̅ ̅̅  equals  𝐹(−𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅. If we see the earlier 

theorem that is  ℱ[𝑓(−𝑥)] = 𝐹(−𝛼) and ℱ[𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ] = 𝐹(𝛼)̅̅ ̅̅ ̅̅ ̅ whereas, this one is 

ℱ[𝑓(𝑥)̅̅ ̅̅ ̅̅ ] = 𝐹(−𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅.  
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To prove this one again, we are starting with the definition, that is, 

𝐹(−𝛼) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖(−𝛼)𝑥𝑑𝑥

∞

−∞

 



If we take conjugate on both sides, then we have, 

𝐹(−𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅ = [
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖(−𝛼)𝑥𝑑𝑥

∞

−∞

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=
1

√2𝜋
∫ 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑒𝑖𝛼𝑥𝑑𝑥 = ℱ[𝑓(𝑥)̅̅ ̅̅ ̅̅ ]

∞

−∞

 

So this completes the proof. 
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Let us see some examples now. Suppose, we want to evaluate the Fourier cosine transform 

of cos (
𝑥2

2
−

𝜋

8
). Instead of solving this problem directly, let us do it in some other way, 

where we will use various properties and we will try to find out the Fourier cosine 

transform of this function. 
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As already derived, we know that 

ℱ [cos
𝑥2

2
] =

1

√2
[cos

𝛼2

2
+ sin

𝛼2

2
] 

ℱ [sin
𝑥2

2
] =

1

√2
[cos

𝛼2

2
− sin

𝛼2

2
] 

Again if we recall, we have proved that for an even function, the Fourier transform and the 

Fourier cosine transform are the same. Since cos (
𝑥2

2
−

𝜋

8
) is an even function, so we can 

say that, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] = ℱ [cos (

𝑥2

2
−

𝜋

8
)] 

Now using the formula for cos(𝐴 + 𝐵) we get, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] = cos

𝜋

8
⋅ ℱ [cos

𝑥2

2
] + sin

𝜋

8
⋅ ℱ [sin

𝑥2

2
] 
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If we substitute the values of  ℱ [cos
𝑥2

2
]  and  ℱ [sin

𝑥2

2
], then we get, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] = cos

𝜋

8
⋅

1

√2
[cos

𝛼2

2
+ sin

𝛼2

2
] + sin

𝜋

8
⋅

1

√2
[cos

𝛼2

2
− sin

𝛼2

2
] 

=
1

√2
[cos

𝛼2

2
cos

𝜋

8
+ sin

𝛼2

2
cos

𝜋

8
+ cos

𝛼2

2
sin

𝜋

8
− sin

𝛼2

2
sin

𝜋

8
] 

=
1

√2
[cos (

𝛼2

2
+

𝜋

8
) + sin (

𝛼2

2
+

𝜋

8
)] 

= cos
𝜋

4
cos (

𝛼2

2
+

𝜋

8
) + sin

𝜋

4
sin (

𝛼2

2
+

𝜋

8
) 

= cos (
𝛼2

2
+

𝜋

8
−

𝜋

4
) 

= cos (
𝛼2

2
−

𝜋

8
) 

Therefore, the function is self-reciprocal with respect to Fourier cosine transform, because, 

Fourier cosine transform of the function is the function itself. 
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Now, let us solve this same problem using some other approach so that we will see that 

one problem can be solved in various ways and we will visualize the advantages of using 

the properties of the transform. 
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So, from the definition of Fourier cosine transform, we can write, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] = √

2

𝜋
∫ cos (

𝑥2

2
−

𝜋

8
) cos 𝛼𝑥 𝑑𝑥

∞

0

 

Since cos (
𝑥2

2
−

𝜋

8
) cos 𝛼𝑥 is an even function, so we can change the limit and write down 

as 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

2
√

2

𝜋
∫ cos (

𝑥2

2
−

𝜋

8
) cos 𝛼𝑥 𝑑𝑥

∞

−∞

 

This is possible only because the function is an even function. If we use the formula for 

2 cos 𝐴 cos 𝐵, we can rewrite the above equation as, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

4
√

2

𝜋
∫ [cos (

𝑥2

2
−

𝜋

8
+ 𝛼𝑥) + cos (

𝑥2

2
−

𝜋

8
− 𝛼𝑥)] 𝑑𝑥

∞

−∞

 

Now, we can break it into two separate integrals, that is 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

4
√

2

𝜋
[∫ cos (

𝑥2

2
−

𝜋

8
+ 𝛼𝑥) 𝑑𝑥 + ∫ cos (

𝑥2

2
−

𝜋

8
− 𝛼𝑥) 𝑑𝑥

∞

−∞

∞

−∞

] 
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In the second integral, if we put 𝑥 = −𝑧 then it will be the same as the first integral. 

Therefore, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

2
√

2

𝜋
∫ cos (

𝑥2

2
−

𝜋

8
+ 𝛼𝑥) 𝑑𝑥

∞

−∞

 

Now, we have to adjust it in such a way that, after adjustment it will contain a whole square 

and a constant term i.e., 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

2
√

2

𝜋
∫ cos [(

𝑥 + 𝛼

√2
)

2

− (
𝛼2

2
+

𝜋

8
)] 𝑑𝑥

∞

−∞
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If we substitute  
𝑥+𝛼

√2
= 𝑣 so that 𝑑𝑥 = √2𝑑𝑣, then above equation reduces to 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

√𝜋
∫ cos [𝑣2 − (

𝛼2

2
+

𝜋

8
)] 𝑑𝑣

∞

−∞

 

If we expand it, we get, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

√𝜋
cos (

𝛼2

2
+

𝜋

8
) ∫ cos 𝑣2 𝑑𝑣

∞

−∞

+
1

√𝜋
sin (

𝛼2

2
+

𝜋

8
) ∫ sin 𝑣2 𝑑𝑣

∞

−∞

 

Now, we have to find out the values of ∫ cos 𝑣2 𝑑𝑣
∞

−∞
 and ∫ sin 𝑣2 𝑑𝑣

∞

−∞
. So, let us see, 

how to find out the values of these integrals. 
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To find the above integrals, we start with 

∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

−∞

= 2 ∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

0

  (∵ 𝑒−𝑖𝑣2
 is an even function of 𝑣) 

If we substitute 𝑣2 = 𝑧, then we have, 

∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

−∞

= ∫ 𝑒−𝑖𝑧𝑧−1/2 𝑑𝑧
∞

0

 

Again if we substitute 𝑖𝑧 = 𝑡, then we get, 

∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

−∞

=
1

𝑖1/2
∫ 𝑒−𝑡𝑡−1/2 𝑑𝑡

∞

0

 

The integral on the right side is in the form of Gamma function. Therefore, 

∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

−∞

=
1

𝑖1/2
Γ (

1

2
) 
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Since 𝑖1/2 = (cos
𝜋

2
+ 𝑖 sin

𝜋

2
)

1/2
= cos

𝜋

4
+ 𝑖 sin

𝜋

4
=

1

√2
(1 + 𝑖) =

√2

1−𝑖
 and  Γ (

1

2
) = √𝜋, 

then after simplification, the above equation reduces to, 

∫ 𝑒−𝑖𝑣2
𝑑𝑣 

∞

−∞

= √
𝜋

2
 (1 − 𝑖) = √

𝜋

2
− 𝑖√

𝜋

2
 

So, if we write 𝑒−𝑖𝑣2
 in terms of cosine and sine, then we have, 

∫ [cos 𝑣2 − 𝑖 sin 𝑣2]𝑑𝑣 
∞

−∞

= √
𝜋

2
− 𝑖√

𝜋

2
 

Now comparing real part and imaginary part on both sides, we get, 

∫ cos 𝑣2 𝑑𝑣 
∞

−∞

= ∫ sin 𝑣2 𝑑𝑣 
∞

−∞

= √
𝜋

2
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Now, we substitute the values of ∫ cos 𝑣2 𝑑𝑣
∞

−∞
 and ∫ sin 𝑣2 𝑑𝑣

∞

−∞
, so we get, 

ℱ𝑐 [cos (
𝑥2

2
−

𝜋

8
)] =

1

√2
cos (

𝛼2

2
+

𝜋

8
) +

1

√2
sin (

𝛼2

2
+

𝜋

8
) 

= cos
𝜋

4
cos (

𝛼2

2
+

𝜋

8
) + sin

𝜋

4
sin (

𝛼2

2
+

𝜋

8
) 

= cos (
𝜋

4
−

𝛼2

2
−

𝜋

8
) 

= cos (
𝜋

8
−

𝛼2

2
) 

= cos (
𝛼2

2
−

𝜋

8
) 

Hence we obtain the solution which is same as the previous one. We did the problem 

purposefully, because we wanted to show one thing that, if we solve it using integration 

how much time it takes, how much effort we have to give and how many difficult 

integrations we have to evaluate. Whereas, if we use the properties and if we use the 

Fourier transform of known functions, then very easily we can find out the Fourier 

transform or Fourier cosine transform of complicated functions also. 

Thank you. 


