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 Lecture - 32 

Fourier Transform of Derivative and Integral of a Function 

 

In the previous two lectures, we have discussed the properties of Fourier transform, Fourier 

sine transform and Fourier cosine transform. And also we have discussed the applications 

of these properties that is if we know the Fourier transform of a function, then using the 

properties of Fourier transform, how we can find out the Fourier transform of some other 

complicated functions. So, let us discuss some more properties and their applications. 
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Firstly, we discuss about the effects on Fourier transform when a function is multiplied by 

𝑥𝑛. Next we check the effects on Fourier sine transform and Fourier cosine transform also, 

if the function is multiplied by 𝑥 only. 
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Let us see the first one. From the definition, we know, 

𝐹(𝛼) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

If we differentiate both sides of the above equation 𝑛 times with respect to 𝛼 (i.e., using 

differentiation under integration), then we get, 

𝑑𝑛

𝑑𝛼𝑛
𝐹(𝛼) =

1

√2𝜋
∫ 𝑓(𝑥) ⋅ (𝑖𝑥)𝑛 𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

=
𝑖𝑛

√2𝜋
∫ 𝑥𝑛𝑓(𝑥) 𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

= 𝑖𝑛ℱ[𝑥𝑛𝑓(𝑥)] 

∴ ℱ[𝑥𝑛𝑓(𝑥)] =
1

𝑖𝑛
 

𝑑𝑛

𝑑𝛼𝑛
𝐹(𝛼) = (−𝑖)𝑛  

𝑑𝑛

𝑑𝛼𝑛
𝐹(𝛼) 

This completes the proof of the first property. 
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Let us now see the effects on Fourier sine transform. To check this, we will start with the 

definition of Fourier cosine transform of 𝑓(𝑥). 

𝐹𝑐(𝛼) = √
2

𝜋
∫ 𝑓(𝑥) cos 𝛼𝑥 𝑑𝑥

∞

0

 

 



 

 

If we differentiate both sides of the above equation with respect to 𝛼 (i.e., differentiation 

under integration), then we get, 

𝑑

𝑑𝛼
𝐹𝑐(𝛼) = √

2

𝜋
∫ 𝑓(𝑥) ⋅ (−𝑥) sin 𝛼𝑥 𝑑𝑥

∞

0

 

= −√
2

𝜋
∫ 𝑥𝑓(𝑥) sin 𝛼𝑥 𝑑𝑥

∞

0

 

And this expression on the right side is nothing but the Fourier sine transform of 𝑥𝑓(𝑥). 

Therefore, we can write down  

∴ ℱ𝑠[𝑥𝑓(𝑥)] = −
𝑑

𝑑𝛼
𝐹𝑐(𝛼) 

So, this completes the proof. In the same fashion, we can prove the third property also. 
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Now we will study how to find the Fourier transform of derivatives of a function. We have 

studied similar properties whenever we were dealing with the Laplace transform. In these 

cases, we add an extra condition only i.e., 𝑓(𝑥) approaches 0 as 𝑥 → ∞. So, whenever we 

are taking the second derivative, then not only 𝑓(𝑥) but also its first derivative 𝑓′(𝑥), both 

should approach 0 whenever 𝑥 → ∞. So, let us see the proofs of the theorems one after 

another.  
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Firstly, we have to prove that  

ℱ[𝑓′(𝑥)] = −𝑖𝛼 𝐹(𝛼)   if  𝑓(𝑥) → 0  as 𝑥 → ±∞ 

We are starting with the left hand side that is  

ℱ[𝑓′(𝑥)] =
1

√2𝜋
∫ 𝑓′(𝑥) 𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

=
1

√2𝜋
∫ 𝑒𝑖𝛼𝑥

𝑑

𝑑𝑥
 [𝑓(𝑥)] 𝑑𝑥

∞

−∞

 

If we take 𝑒𝑖𝛼𝑥 as the first function and 
𝑑

𝑑𝑥
 [𝑓(𝑥)] as the second function and we use 

integration by parts, then we have, 

ℱ[𝑓′(𝑥)] =
1

√2𝜋
([𝑒𝑖𝛼𝑥𝑓(𝑥)]

−∞

∞
− 𝑖𝛼 ∫ 𝑒𝑖𝛼𝑥𝑓(𝑥) 𝑑𝑥

∞

−∞

) 

Since 𝑓(𝑥) → 0  as 𝑥 → ±∞, so the first term on the right hand side of the above equation 

will vanish. Therefore, we have, 

ℱ[𝑓′(𝑥)] = −𝑖𝛼 (
1

√2𝜋
∫ 𝑒𝑖𝛼𝑥𝑓(𝑥) 𝑑𝑥

∞

−∞

) 

= −𝑖𝛼 𝐹(𝛼) 

If we proceed in the same manner, then we will obtain, 

ℱ[𝑓𝑛(𝑥)] = (−𝑖𝛼)𝑛 𝐹(𝛼)  provied  𝑓(𝑥), 𝑓′(𝑥), ⋯ , 𝑓𝑛−1(𝑥) → 0  as 𝑥 → ±∞ 
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Now, let us see the second one i.e., Fourier sine transform of 𝑓′(𝑥) and we proceed in the 

same manner as the first one. So, we have, 

ℱ𝑠[𝑓′(𝑥)] = √
2

𝜋
∫ 𝑓′(𝑥) sin 𝛼𝑥 𝑑𝑥

∞

0

= √
2

𝜋
∫ sin 𝛼𝑥

𝑑

𝑑𝑥
 [𝑓(𝑥)] 𝑑𝑥

∞

0

 

If we take sin 𝛼𝑥 as the first function and 
𝑑

𝑑𝑥
 [𝑓(𝑥)] as the second function and we use 

integration by parts, then we have, 



 

 

ℱ𝑠[𝑓′(𝑥)] = √
2

𝜋
([sin 𝛼𝑥 𝑓(𝑥)]0

∞ − 𝛼 ∫ cos 𝛼𝑥 𝑓(𝑥) 𝑑𝑥
∞

0

) 

Since 𝑓(𝑥) → 0  as 𝑥 → ∞, so the first term on the right hand side of the above equation 

will vanish and from the second term, we get nothing but Fourier cosine transform of the 

function 𝑓(𝑥). So, we have, 

ℱ𝑠[𝑓′(𝑥)] = −𝛼 𝐹𝑐(𝛼) 

So, this completes the proof. Similarly, the third one can also be proved easily. 
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Let us see the proof of the fourth one. From the definition, we have,  

ℱ𝑐[𝑓′′(𝑥)] = √
2

𝜋
∫ 𝑓′′(𝑥) cos 𝛼𝑥 𝑑𝑥

∞

0

= √
2

𝜋
∫ cos 𝛼𝑥

𝑑

𝑑𝑥
 [𝑓′(𝑥)] 𝑑𝑥

∞

0

 

Using integration by parts, we get, 

ℱ𝑐[𝑓′′(𝑥)] = √
2

𝜋
([cos 𝛼𝑥 𝑓′(𝑥)]0

∞ + 𝛼 ∫ sin 𝛼𝑥 𝑓′(𝑥) 𝑑𝑥
∞

0

) 

Since 𝑓′(𝑥) → 0 as 𝑥 → ∞, then we have 

ℱ𝑐[𝑓′′(𝑥)] = −√
2

𝜋
𝑓′(0) + 𝛼ℱ𝑠[𝑓′(𝑥)] 

= −√
2

𝜋
𝑓′(0) + 𝛼[−𝛼𝐹𝑐(𝛼)] 

= −𝛼2𝐹𝑐(𝛼) − √
2

𝜋
𝑓′(0) 
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And similarly, we can prove the fifth one also. 
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The earlier theorem was on the differentiation of the Fourier transform of a function. If we 

know the Fourier transform of a function, then we have studied that what should be the 

Fourier transform of the differentiation of that function. Now, we will discuss that if we 

know the Fourier transform of a function and if we integrate the function, then what would 

be the Fourier transform of the new function. 
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Let, 

𝜙(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑎

 

∴ 𝜙′(𝑥) = 𝑓(𝑥)                                                                 (1) 

Using the previous properties, we can write down  

ℱ[𝜙′(𝑥)] = −𝑖𝛼ℱ[𝜙(𝑥)] 

= −𝑖𝛼ℱ [∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑎

] 

∴ ℱ [∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑎

] = −
ℱ[𝜙′(𝑥)]

𝑖𝛼
 

= −
ℱ[𝑓(𝑥)]

𝑖𝛼
 

= −
𝐹(𝛼)

𝑖𝛼
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This completes the proof of the theorem. Thank you. 


